Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T23:32:29.071Z Has data issue: false hasContentIssue false

Chlorite and Illite Compositions from Upper Silurian Rock Salts, Retsof, New York

Published online by Cambridge University Press:  01 July 2024

M. W. Bodine Jr.*
Affiliation:
Department of Geological Sciences, State University of New York, Binghamton, NY 13901, U.S.A.
R. R. Standaert*
Affiliation:
Department of Geological Sciences, State University of New York, Binghamton, NY 13901, U.S.A.
*
*Present address: Department of Geoscience, New Mexico Institute of Mining and Technology, Socorro, NM 87801.
Present address: Continental Oil Co., 1755 Glenarm Place, Denver, CO 80202.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Chlorite and illite are the major clay minerals in silicate assemblages from a rock salt bed in the Vernon Formation (Upper Silurian) at Retsof, New York. Textural features and Br content of the salt indicate precipitation from shallow marine brine with no subsequent postdepositional recrystallization. Sample mounting procedure for electron microprobe analysis involves clay particle dispersion, sedimentation, and transferral to a planar silver print surface. The 001 face of the flake, rather than the conventional polished plane, constitutes the analyzed surface. Microprobe analysis of the chlorite (80 grains from four samples) yields a mean aggregate Mg-rich clinochlore composition of

$$(M{g_{4.51}}Fe_{0.23}^ + A{l_{1.21}})(A{l_{1.09}}S{i_{2.91}}){O_{10}}{(OH)_{8,}}$$
which is relatively uniform among grains and among samples. Its unique composition when compared with normal shale chlorites suggests an authigenic origin in the marine evaporite environment. Illite (106 grains from five samples) has a mean aggregate composition of
$${{\rm{K}}_{0.85}}(A{l_{1.61}}Fe_{0.20}^{3 + }M{g_{0.23}})(A{l_{0.76}}S{i_{3.24}}){O_{10}}{(OH)_2}$$
with little variation among samples. The illite is distinctly less degraded than normal shale illite suggesting some recrystallization occurred in the hypersaline environment. Extensive compositional variation among illite flakes within each sample may reflect alteration of several different detrital micaceous minerals. The term hyperhalmyrolysis is introduced to denote mineral reactions which occur in the marine hypersaline environment.

Diagenesis effected improved crystallinity and undoubtedly involved isochemical recrystallization of the bulk silicate assemblage. Metasomatism of the assemblage during diagenesis, however, appears to be negligible.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1977

References

Ailing, H. L. and Briggs, L. I. Jr. (1961) Stratigraphy of Upper Silurian Cayugan evaporites: Am. Assoc. Pet. Geologists Bull. 45, 517547.Google Scholar
Berner, R. A. (1971) Principles of Chemical Sedimentology: McGraw-Hill, New York.Google Scholar
Bodine, M. W. Jr. (1971) Alteration of basic volcanic rocks by marine hypersaline brines, Hallstatt, Upper Austria [Abs.]: Geol. Soc. Am. Abstr. 3, 509.Google Scholar
Bodine, M. W. Jr. and Fernalld, T. H. (1973) EDTA dissolution of gypsum, anhydrite, and Ca–Mg carbonates: J. Sediment. Petrol. 43, 11521156.Google Scholar
Bodine, M. W. Jr., Fernalld, T. H., and Standaert, R. R. (1973) The talc–quartz association in marine evaporite rocks [abs.] Trans. Am. Geophys. Union 54, 487.Google Scholar
Bradley, W. F. and Grim, R. E. (1961) Mica clay minerals: The X-ray Identification and Crystal Structure of Clay Minerals, Brown, G., ed. pp. 208241. Mineral Soc., London.Google Scholar
Braitsch, O. (1958) Über den Mineralbestand der wasser-unlöslichen Rückstände von Salzen der Stassfurtserie im südlichen Leinetal: Freiberger Forschungshefte, Reihe A: Bergbau 123, 160163.Google Scholar
Braitsch, O. (1971) Salt Deposits: Their Origin and Composition: Springer–Verlag, Berlin.CrossRefGoogle Scholar
Braitsch, D. and Hermann, A. (1963) Zur Geochemie des Broms in salinaren Sedimenten, Teil 1, Experimentelle Bestimmung der Br-Verteilung in verschiedenen natürlichen Salzsystemen: Geochim. Cosmochim. Acta 7, 83110.Google Scholar
Brindley, G. W. (1961) Chlorite minerals: The X-ray Identification and Crystal Structure of Clay Minerals, Brown, G., ed. pp. 242296. Mineral. Soc., London.Google Scholar
Deer, W. A., Howie, R. A., and Zussman, J. (1962) Rockforming Minerals. Vol. 3, Sheet Silicates: Wiley, New York.Google Scholar
Dellwig, L. F. and Evans, R. (1969) Depositional processes in Salina salt of Michigan, Ohio, and New York: Am. Assoc. Pet. Geologists Bull. 53, 949956.Google Scholar
Dreizler, I. (1962) Mineralogische Untersuchungen an zwei Gipsvorkommen der Werraserie (Zechstein): Beitr. Mineral. Petrogr. 8, 323338.Google Scholar
Droste, J. (1963) Clay mineral composition of evaporite sequences: Symposium on Salt, Northern Ohio Geol. Soc., Cleveland, Ohio, 4754.Google Scholar
Foster, M. D. (1962) Interpretation of the composition and a classification of the chlorites: U.S. Geol. Survey, Prof. Paper 414-A, pp. 133.CrossRefGoogle Scholar
Füchtbauer, H. and Goldschmidt, H. (1959) Die Tonminerale der Zechsteinformation: Beitr. Mineral. Petrogr. 6, 320345.Google Scholar
Garrels, R. M. and Christ, C. L. (1965) Solutions, Minerals, and Equilibria: Harper & Row, New York.Google Scholar
Grim, R. E., Droste, J. B., and Bradley, W. F. (1960) A mixed-layer clay mineral associated with an evaporite: Clays & Clay Minerals 8, 228236.CrossRefGoogle Scholar
Helgesen, H. C., Brown, T. H., and Leeper, R. H. (1969) Handbook of Theoretical Activity Diagrams Depicting Chemical Equilibria in Geologic Systems Involving an Aqueous Phase at one atm and 0–300°C: Freeman, Cooper, San Francisco.Google Scholar
Hemley, J. J. (1959) Some mineralogical equilibria in the system K2O–Al2O3–SiO2–H2O: Am. J. Sci. 257, 241270.CrossRefGoogle Scholar
Holser, W. T. (1966) Bromide geochemistry of salt rocks: Second Symposium on Salt, Northern Ohio Geol. Soc., Cleveland, Ohio 1, 248275.Google Scholar
Hower, J., Eslinger, E. V., Hower, M. E., and Perry, E. A. (1976) Mechanism of burial metamorphism of argillaceous sediment. 1. Mineralogical and chemical evidence: Bull. Geol. Soc. Am. 87, 725737.2.0.CO;2>CrossRefGoogle Scholar
Hower, J. and Mowatt, T. C. (1966) The mineralogy of illites and mixed-layer illite/montmorillonites: Am. Mineral. 51, 825854.Google Scholar
Kreidler, W. L. (1957) Occurrence of Silurian salt in New York State: N.Y. State Museum Sci. Service Bull. 361, 156.Google Scholar
Kolthoff, I. M. and Elving, P. J. (1961) Treatise on Analytical Chemistry, Part II, Vol. 7: Interscience, New York.Google Scholar
Lippmann, F. and Savascin, M. Y. (1969) Mineralogische Untersuchungen an Lösüngstrückständen eines württembergischen Keupergipsvorkommen: Tschermaks Mineral. Petrogr. Mitt. 13, 165190.CrossRefGoogle Scholar
Lounsbury, R. W. (1963) Clay mineralogy of the Salina Formation, Detroit, Michigan: Symposium on Salt, Northern Ohio Geol. Soc., Cleveland, Ohio, 5663.Google Scholar
Pundeer, G. S. (1969) Mineralogy, genesis, and diagenesis of a brecciated shaley clay from the Zechstein evaporite series of Germany: Contr. Mineral. Petrol. 23, 6585.CrossRefGoogle Scholar
Reinold, P. (1965) Über das Vorkommen von Chlorit im alpinen Salinar: Tschermaks Mineral. Petrogr. Mitt. ser. 3(9), 195201.CrossRefGoogle Scholar
Rickard, L. V. (1969) Stratigraphy of the Upper Silurian Salina Group, New York, Pennsylvania, Ohio, Ontario: Map and Chart Series No. 12, New York State Museum and Science Service.Google Scholar
Schwerdtner, W. (1963) Analysis of small amounts of bromide in some salt rocks of the Praire Evaporite Formation of Saskatchewan: Symposium on Salt, Northern Ohio Geol. Soc., Cleveland, Ohio, 240246.Google Scholar
Treesh, M. I. and Friedman, G. M. (1974) Sabkha deposition of the Salina Group (Upper Silurian) of New York State: Fourth Symposium on Salt, Northern Ohio Geol. Soc., Cleveland, Ohio 1, 3446.Google Scholar
Weaver, C. E. and Pollard, L. D. (1973) The Chemistry of Clay Minerals: Elsevier, New York.Google Scholar