Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T18:51:40.506Z Has data issue: false hasContentIssue false

Chemistry of Mg Smectites in Lacustrine Sediments from the Vicalvaro Sepiolite Deposit, Madrid Neogene Basin (Spain)

Published online by Cambridge University Press:  01 January 2024

Jaime Cuevas*
Affiliation:
Departamento de Química Agrícola, Geología y Geoquímica, Facultad de Ciencias, Universidad Autónona de Madrid., Cantoblanco s/n, 28049 Madrid, Spain
Raquel Vigil de la Villa
Affiliation:
Departamento de Química Agrícola, Geología y Geoquímica, Facultad de Ciencias, Universidad Autónona de Madrid., Cantoblanco s/n, 28049 Madrid, Spain
Susana Ramirez
Affiliation:
Departamento de Química Agrícola, Geología y Geoquímica, Facultad de Ciencias, Universidad Autónona de Madrid., Cantoblanco s/n, 28049 Madrid, Spain UMR 6532 CNRS, Universite de Poitiers, 40, Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Sabine Petit
Affiliation:
UMR 6532 CNRS, Universite de Poitiers, 40, Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Alain Meunier
Affiliation:
UMR 6532 CNRS, Universite de Poitiers, 40, Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Santiago Leguey
Affiliation:
Departamento de Química Agrícola, Geología y Geoquímica, Facultad de Ciencias, Universidad Autónona de Madrid., Cantoblanco s/n, 28049 Madrid, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chemical and structural properties of Mg smectites in the Vicálvaro sepiolite deposit have been studied in detail. The characterization was performed on different size-fractions of selected smectitic samples (5−2 µm; 2−1 µm; 1−0.5 µm; <0.5 µm and <0.1 µm). The chemical compositions of individual particles (5−1 µm) and of bulk undifferentiated fine fractions (1−<0.1 µm) were determined by energy dispersive spectroscopy-scanning electron microscopy and interpreted with the aid of X-ray diffraction (XRD) and infrared spectroscopy (IR) methods. The XRD and IR data demonstrate that all of the Mg smectite materials studied are mainly composed of a complex mixture of stevensite, saponite and mica-type minerals. Although the presence or absence of saponite cannot be confirmed absolutely, stevensite is a significant component of these Mg smectites. This is proven by the calculated layer charge reduction after the Hofmann-Klemen effect. The results are in close agreement with the suggested mechanism of topotactic overgrowth of stevensite on pre-existing phyllosilicate templates. This characterizes clay diagenesis in saline-lake systems.

Type
Research Article
Copyright
Copyright © 2003, The Clay Minerals Society

References

Ames, L.L. Jr. Sand, L.B. and Goldrich, S.S., (1958) A contribution on the Hector, California, bentonite deposit Economic Geology 53 2237 10.2113/gsecongeo.53.1.22.Google Scholar
Banfield, J.F. Jones, B.F. and Veblen, D.R., (1991) An AEM-TEM study of weathering and diagenesis, Albert lake, Oregon: II. Diagenetic modification of the sedimentary assemblage Geochimica et Cosmochimica Acta 55 27952810 10.1016/0016-7037(91)90445-B.Google Scholar
Brindley, G.W., Brindley, G.W. and Brown, G., (1984) Order-disorder in clay mineral structures Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 125 196.Google Scholar
Brunauer, S. Emmett, P.H. and Teller, E., (1938) Adsorption of gases in multimolecular layers Journal of the American Chemical Society 60 309319 10.1021/ja01269a023.Google Scholar
Cuevas, J. Pelayo, M. Rivas, P. and Leguey, S., (1993) Characterization of Mg-clays from the Neogene of the Madrid Basin and their potential as backfilling and sealing material in high level radioactive waste disposal Applied Clay Science 7 383406 10.1016/0169-1317(93)90004-K.Google Scholar
Cuevas, J. Medina, J.A. Casas, J. Martin-Rubi, A. Torres, S. Alvarez, A. and Leguey, S., (1995) Heulandita asociada a esmectitas-Mg en el yacimiento de sepiolita de Vicalvaro. (Cuenca Neogena de Madrid) Boletin de la Sociedad Española de Mineralogia 18 143 155.Google Scholar
Darragi, F. and Tardy, Y., (1987) Authigenic trioctahedral smectites controlling pH, alkalinity, silica and Mg-concentrations in alkaline lakes Chemical Geology 63 5972 10.1016/0009-2541(87)90074-X.Google Scholar
De Santiago, C. Suarez, M. Garcia, E. and Doval, M., (2000) Mg-rich smectite “precursor” phase in the Tagus Basin, Spain Clays and Clay Minerals 48 366373 10.1346/CCMN.2000.0480307.Google Scholar
Elton, N.J. Hooper, J.J. and Holyer, V.A.D., (1997) An occurrence of stevensite and kerolite in the Devonian Crousa gabbro at Dean Quarry, The Lizard, Cornwall, England Clay Minerals 32 241252 10.1180/claymin.1997.032.2.06.Google Scholar
Fordham, A.W., (1990) Formation of trioctahedral illite from biotite in a soil profile over granite gneiss Clays and Clay Minerals 38 187195 10.1346/CCMN.1990.0380210.Google Scholar
Fordham, A.W., (1990) Weathering of biotite into dioctahedral clay minerals Clay Minerals 25 5163 10.1180/claymin.1990.025.1.06.Google Scholar
Galán, E. Alvarez, A. and Esteban, M.A., (1986) Characterization and technical properties of a Mg-rich bentonite Applied Clay Science 1 295309 10.1016/0169-1317(86)90006-2.Google Scholar
Gilkes, R.J. Young, R.C. and Quirk, J.P., (1972) The oxidation of octahedral iron in biotite Clays and Clay Minerals 20 303315 10.1346/CCMN.1972.0200507.Google Scholar
Hay, R.L. Gudman, S.G. Matthews, J.C. Lander, R.H. Duffin, M.E. and Kyser, T.K., (1991) Clay mineral diagenesis in Core KH-3 of Searles Lake, California Clays and Clay Minerals 39 8496 10.1346/CCMN.1991.0390111.Google Scholar
Hofmann, U. and Klemen, E., (1950) Loss of exchangeability of lithium ions in bentonite on heating Zeitschrift für Anorganische und Allgemeine Chemie 262 9599 10.1002/zaac.19502620114.Google Scholar
Hoyos, M. Junco, F. Plaza, J.M. Ramirez, A. and Ruiz Sanchez-Porro, J., (1985) El mioceno de Madrid Geologia y paleontologia del terciario continental de la provincia de Madrid Madrid Consejo Superior de Investigaciones Cientificas, Museo de Ciencias Naturales 9 16.Google Scholar
Jones, B.F., (1986) Clay mineral diagenesis in lacustrine sediments US Geological Survey Bulletin 1578 291 300.Google Scholar
Jones, B.F. Galán, E. and Bailey, S.W., (1988) Sepiolite and palygorskite Hydrous Phyllosilicates (Exclusive of Micas) Washington D.C Mineralogical Society of America 631674 10.1515/9781501508998-021.Google Scholar
Jones, B.F. and Weir, A.H., (1983) Clay minerals of Lake Albert, an alkaline saline lake Clays and Clay Minerals 31 161172 10.1346/CCMN.1983.0310301.Google Scholar
Khoury, H.H. Eberl, D.D. and Jones, B.F., (1982) Origin of magnesium clays from the Amargosa desert, Nevada Clays and Clay Minerals 30 327336 10.1346/CCMN.1982.0300502.Google Scholar
Lanson, B. and Bouchet, A., (1995) X-ray diffraction identification of clay minerals Structure et transformation des argiles dans les champs petroliers et geothermiques: improvements induced by numerical data France Pau 90 115.Google Scholar
Leguey, S. Martin-Rubi, J.A. Casas, J. Marta, J. Cuevas, J. Alvarez, A. Medina, J.A., Churchman, G.J. Fitzpatrick, R.W. and Eggleton, R.A., (1995) Diagenetic evolution and mineral fabric in sepiolitic materials from the Vicalvaro deposit (Madrid Basin) Clays Controlling the Environment Melbourne, Australia CSIRO Publishing 383 392.Google Scholar
de Martin Vidales, J.L. Pozo, M. Medina, J.M. and Leguey, S., (1988) Formacion de sepiolita-paligorskita en litofacies lutitico-carbonaticas en el sector de Borox-Esquivias (cuenca de Madrid) Estudios Geologicos 44 7 18.Google Scholar
de Martin Vidales, J.L. Pozo, M. Alia, J.M. Garcia-Navarro, F. and Rull, F., (1991) Kerolite-stevensite mixed-layers from the Madrid Basin, Central Spain Clay Minerals 26 329342 10.1180/claymin.1991.026.3.03.Google Scholar
Ordoñez, S. Calvo, J.P. del Garcia Cura, M.A. Alonso Zarza, A.M. and Hoyos, M., (1991) Sedimentology of sodium sulphate and special clays from the Tertiary Madrid Basin (Spain) Specical Publication of the International Association of Sedimentology 13 1217 1229.Google Scholar
Pelletier, M. Michot, L.J. Barrès, O. Humbert, B. Petit, S. and Robert, J.L., (1999) Influence of KBr conditioning on the IR hydroxyl-stretching region of saponites Clay Minerals 34 439445 10.1180/000985599546343.Google Scholar
Petit, S. Prot, T. Decarreau, A. Mosser, C. and Toledo-Groke, M.C., (1992) Crystallochemical study of a population of particles in smectites from a lateritic weathering profile Clays and Clay Minerals 40 436445 10.1346/CCMN.1992.0400408.Google Scholar
Petit, S. Righi, D. Madejová, J. and Decarreau, A., (1998) Layer charge estimation of smectites using infrared spectroscopy Clay Minerals 33 579591 10.1180/claymin.1998.033.4.05.Google Scholar
Petit, S. Righi, D. Madejová, J. and Decarreau, A., (1999) Interpretation of the infrared NH 4 + spectrum of the NH 4 + -clays: application to the evaluation of the layer charge Clay Minerals 34 543549 10.1180/000985599546433.Google Scholar
Post, J.L., (1984) Saponite from near Ballarat, California Clays and Clay Minerals 32 147153 10.1346/CCMN.1984.0320209.Google Scholar
Ramirez, S. Garralon, A. Cuevas, J. Martin-Rubi, J.A. Casas, J. Alvarez, A. and Leguey, S., (1996) Caracteristicas quimicas y propiedades de superficie en secuencias-tipo de materiales esmectiticos en el yacimiento de sepiolita de Vicalvaro (Madrid) Boletin de la Sociedad Española de Mineralogia 19 53 70.Google Scholar
Reynolds, R.C. Jr., Brindley, G.W. and Brown, G., (1980) Interstratified clay minerals Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 249 304.Google Scholar
Reynolds, R.C. Jr. (1985) NEWMOD© a computer program for the calculation of one-dimensional diffraction patterns of mixed-layer clays. Published by the author, R.C. Reynolds Jr., 8 Brook Dr., Hanover, New Hampshire, USA.Google Scholar
Rhodes, C.N. and Brown, D.R., (1994) Rapid determination of the cation exchange capacity of clays using Co(II) Clays and Clay Minerals 29 799 801.Google Scholar
Russell, J.D. and Wilson, M.J., (1987) Infrared methods A Handbook of Determinative Methods in Clay Mineralogy Glasgow and London Blackie 133 173.Google Scholar
Suquet, H. de la Calle, C. and Pezerat, H., (1975) Swelling and structural organization of saponite Clays and Clay Minerals 23 19 10.1346/CCMN.1975.0230101.Google Scholar
Suquet, H. Iiyama, J.T. Kodama, H. and Pezerat, H., (1977) Synthesis and swelling properties of saponites with increasing layer charge Clays and Clay Minerals 25 231242 10.1346/CCMN.1977.0250310.Google Scholar
Tettenhorst, R. and Roberson, H.E., (1973) X-ray diffraction aspects of montmorillonites American Mineralogist 58 73 80.Google Scholar
Vali, H. Martin, R.F. Amarantidis, G. and Morteani, G., (1993) Smectite group minerals in deep sea sediments: Monomineralic solutions or multiphase mixtures? American Mineralogist 78 127 129.Google Scholar
Wollast, R. Mackenzie, F.T. and Bricker, O.P., (1968) Experimental precipitation and genesis of sepiolite at earth-surface conditions American Mineralogist 53 1645 1662.Google Scholar