Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T16:10:15.677Z Has data issue: false hasContentIssue false

A Chemical, XRD, and 27Al MAS NMR Investigation of Miocene Gulf Coast Shales with Application to Understanding Illite/Smectite Crystal-Chemistry

Published online by Cambridge University Press:  28 February 2024

Paul A. Schroeder*
Affiliation:
Department of Geology, The University of Georgia, Athens, Georgia 30602
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This study assesses the distribution of Al and Fe in mixed-layer illite/smectites (I/S) in shales undergoing burial diagenetic changes, using evidence from 27Al NMR, XRD, and chemical analyses. Samples studied include a sequence of mixed-layer I/S (ranging from 40% to 68% illite layers) in shales from a well located in the Caillou Island Oil Field, Terrebonne Parish, Louisiana, as well as synthetic mica-montmorillonite (Syn-1), Silver Hill illite (IMt-1), K-benonite (ISMt-1), an Fe-bearing muscovite, phengitic muscovite, and a randomly interstratified mixed-layer I/S with 50% illite layers. Using a simplified model, where Fe3+ isomorphously substitutes randomly for [6]Al in the dioctahedral 2:1 structure, the 27Al NMR signal intensities are examined with regard to the paramagnetic deshielding effect of the Fe3+. The rapid decrease in paramagnetic deshielding with distance allows for a spherical “wipeout” model with a radius of 6 Å, over which there is complete effective paramagnetic line broadening (i.e., Al within the sphere is not “seen”). Using the average dimensions of a dioctahedral mica, the expected relative intensities of the octahedral and tetrahedral Al signal are determined as a function of Fe2O3 content.

Observed 27Al signals, normalized per unit weight of Al2O3 and relative to the lowest Fe-bearing phase, show a clear trend of decreasing intensity with increasing Fe2O3 content. Normative fitting of oxide data to structural formulae reveals a similar trend of decreasing 27Al intensity with increasing fraction of dioctahedral site occupied by Fe3+. Agreement between the observed 27Al intensities of low Fe-bearing 2:1 phyllosilicates and 27Al intensities predicted using the wipeout model indicate regular ordering of Fe and Al within the low Fe-bearing phases. However, observed 27Al intensities for the I/S specimens fall into a region where the amount of Al seen is in excess for the given XFe, thus indicating segregation of Al and Fe domains.

The second order quadrupole effect for the [6]Al site in the I/S fraction of shales decreases very slightly with increasing depth and percent of illite in the I/S, but not enough to effect site quantitation. Quantitative apportionment of elements into the I/S phase of the <0.2 µm fraction using NMR constraints shows directly a trend of increasing number of [4]Al sites and no change in the number of [6]Al sites with increasing degree of illitization for samples from the Gulf Coast diagenetic environment. Stoichiometry indicates an approximate 1:1 substitution of tetrahedral Al for Si over the 40–68% range of illite in I/S examined.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

Footnotes

1

27Al chemical shift frequency is reported in ppm units relative to the resonant Al frequency in a 1.0 M AlCl3 solution.

References

Ann, J. H. and Buseck, P. R., 1990 Layer-stacking sequences and structural disorder in mixed-layer illite/smectite: Image simulations and HRTEM imaging Amer. Mineral. 75 267275.Google Scholar
Alemany, L. B., Massiot, D., Sheriff, B. L., Smith, M. E. and Taulelle, F., 1991 Observation and accurate quantification of 27Al MAS NMR spectra of some Al2SiOs polymorphs containing sites with large quadrupole interactions Chem. Phys. Lett. 177 301314 10.1016/0009-2614(91)85035-U.CrossRefGoogle Scholar
Altaner, S. P., Weiss, C. A. and Kirkpatrick, R. J., 1988 Evidence from 29-Si NMR for the structure of mixed-layer illite/smectite clay minerals Nature 331 699702 10.1038/331699a0.CrossRefGoogle Scholar
Behrens, H. J. and Schnabel, B., 1982 The second order influence of the nuclear quadrupole interaction on the central line in the NMR of quadrupolar nuclei using rapid ample spinning Physica 114B 185190.Google Scholar
Bethke, C. M. and Altaner, S. P., 1986 Layer-by-layer mechanism of smectite illitization and application to a new rate law Clays & Clay Minerals 34 136145 10.1346/CCMN.1986.0340204.CrossRefGoogle Scholar
Boles, J. R. and Franks, S. G., 1979 Clay diagenesis in Wilcox sandstones of southwest Texas. Implications of smectite diagenesis on sandstone cementation J. of Sed. Petrology 49 5570.Google Scholar
Eberl, D. D. and Srodon, J., 1988 Ostwald ripening and interparticle diffraction effects for illite crystals Amer. Mineral. 73 13351345.Google Scholar
Eberl, D. D., Środoń, J., Lee, M., Nadeau, P. H. and Northrop, H. R., 1987 Sericite form of the Silverton caldera, Colorado: Correlation among structure, composition, origin, and particle thickness Amer. Mineral. 72 914934.Google Scholar
Elliott, W. C., Aronson, J. J., Matisoff, G. and Gautier, D. L., 1991 Kinetics of the smectite to illite transformation in the Denver Basin: Clay mineral, K-Ar data, and mathematical model results A.A.P.G. Bulletin 75 436478.Google Scholar
Fenzke, D., Freude, D., Frohlich, T. and Haase, J., 1981 NMR intensity measurements of half-integer quadrupole nuclei Chem. Phys. Lett. 111 171175 10.1016/0009-2614(84)80458-3.CrossRefGoogle Scholar
Ganapathy, S., Schrame, S. and Oldfield, E., 1982 Variable-angle sample-spinning high resolution NMR of solids. J. Chem. Phys. 77 43604365 10.1063/1.444436.CrossRefGoogle Scholar
Ghose, S. and Tsang, T., 1973 Structural dependence of quadrupole coupling constant e2qQ/h for 27-Al and crystal field parameter D for Fe3+ in aluminosilicates Amer. Mineral. 58 748755.Google Scholar
Giese, R. F. and Bailey, S. W., 1988 Kaolin minerals: Structures and stabilities Hydrous Phyllosilicates (Exclusive of Micas), Vol. 19 Washington, D.C. Mineralogical Society of America 2966 10.1515/9781501508998-008.CrossRefGoogle Scholar
Goodman, B. A. and Stucki, J. W., 1984 The use of nuclear magnetic resonance (NMR) for the determination of tetrahedral aluminium in montmorillonite Clay Miner. 19 663667 10.1180/claymin.1984.019.4.12.CrossRefGoogle Scholar
Herrero, C. P., Schultz, L. G., Olphen, H. van and Mumpton, F. A., 1987 Monte carlo simulation and calculation of electrostatic energies in the analysis of Si-Al distributions in micas Proceedings of the International Clay Conference, Denver Denver The Clay Minerals Society 2430.Google Scholar
Herrero, C. P., Gregorkiewitz, M. and Serratosa, J. M., 1987 29-Si MAS-NMR spectroscopy of mica type silicates: Observed and predicted distribution of tetrahedral Al-Si Phys. Chem. Minerals 15 8490 10.1007/BF00307613.CrossRefGoogle Scholar
Herrero, C. P., Sanz, J. and Serratosa, M., 1985a Si, Al distribution in micas: Analysis by high-resolution 29-Si NMR spectroscopy J. Phys. C: Solid State Phys. 18 222 10.1088/0022-3719/18/1/009.CrossRefGoogle Scholar
Herrero, C. P., Sanz, J. and Serratosa, M., 1985b Tetrahedral cation ordering in layer silicates by 29-Si NMR spectroscopy Solid State Comm. 53 151154 10.1016/0038-1098(85)90115-2.CrossRefGoogle Scholar
Howard, J. J., Schultz, L. G., Olphen, H. van and Mumpton, F. A., 1987 Influence of shale fabric on illite/smectite diagenesis in the Oligocene Frio Formation, south Texas Proceedings of the International Clay Conference Denver The Clay Minerals Society 144150.Google Scholar
Hower, J., Elsinger, E. V., Hower, M. E. and Perry, E. A., 1976 Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence Geol. Soc. Am. Bulletin 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Inoue, A., Kohyama, N., Kitagawa, R. and Watanabe, T., 1987 Chemical and morphological evidence for the conversion of smectite to illite Clays & Clay Minerals 35 111120 10.1346/CCMN.1987.0350203.CrossRefGoogle Scholar
Jakobsen, H. J., Jacobsen, H. and Lindgreen, H., 1988 Solid state 27-Al and 29-Si N.M.R. studies on diagenesis of mixed layer silicates in oil source rocks Fuel 67 727 370 10.1016/0016-2361(88)90306-7.CrossRefGoogle Scholar
Kinsey, R. A., Kirkpatrick, R. J., Hower, J., Smith, K. A. and Oldfield, E., 1985 High resolution aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopic study of layer silicates, including clay minerals Amer. Mineral. 70 537548.Google Scholar
Kirkpatrick, R. J. and Hawthorne, F. C., 1988 MAS NMR spectroscopy of minerals and glasses Spectroscopic Methods in Mineralogy and Geology, Vol. 18 Washington, D. C. Mineralogical Society of America 341404 10.1515/9781501508974-011.CrossRefGoogle Scholar
Kirkpatrick, R. J., Oestrike, R Jr. Weiss, C. A., Smith, K. A. and Oldfield, E., 1986 High-resolution 27-Al and 29-Si NMR spectroscopy of glasses and crystals along the join CaMgSi2O6-CaAl2SiO6 Amer. Mineral. 71 705711.Google Scholar
Lanson, B. and Champion, D., 1991 The I/S to illite reaction in the late stage diagenesis Amer. J. Sci. 291 473506 10.2475/ajs.291.5.473.CrossRefGoogle Scholar
Lindgreen, H., Jacobsen, H. and Jakobsen, H. J., 1991 Diagenetic structural transformations in North Sea Jurassic illite/smectite Clays & Clay Minerals 39 5469 10.1346/CCMN.1991.0390108.CrossRefGoogle Scholar
Lippmaa, E., Samoson, A. and Magi, M., 1986 High-resolution 27-Al NMR of aluminosilicates J. Am. Chem. Soc. 108 17301735 10.1021/ja00268a002.CrossRefGoogle Scholar
Massiot, D., Bessada, C., Courures, J. P. and Taulelle, F., 1990 A quantitative study of 27Al MAS NMR in YAG J. of Magnetic Resonance 90 231242.Google Scholar
Milliken, K. L., 1989 Petrography and composition of authigenic feldspars, Oligocene Frio Formation, South Texas J. Sed. Petrology 59 361374.Google Scholar
Moore, D. E. and Reynolds, R. C., 1989 X-ray Diffraction and the Identification and A nalysis of Clay Minerals New York Oxford University Press 332.Google Scholar
Morris, H. D., Bank, S. and Ellis, P. D., 1990 27-Al NMR spectroscopy of iron-bearing montmorillonite clays J. Phys. Chem. 94 31213129 10.1021/j100370a069.CrossRefGoogle Scholar
Nadeau, P. H., Wilson, M. J., McHardy, W. J. and Tait, J. M., 1984a Interstratified XRD characteristics of physical mixtures of elementary clay particles Clay Miner. 19 6776 10.1180/claymin.1984.019.1.07.CrossRefGoogle Scholar
Nadeau, P. H., Wilson, M. J., McHardy, W. J. and Tait, J. M., 1984b Interparticle diffraction: A new concept for interstratified clays Clay Miner. 19 757769 10.1180/claymin.1984.019.5.06.CrossRefGoogle Scholar
Nadeau, P. H., Wilson, M. J., McHardy, W. J. and Tait, J. M., 1984c Interstratified clays as fundamental particles Science 225 923925 10.1126/science.225.4665.923.CrossRefGoogle ScholarPubMed
Newman, A C D Brown, G. and Newman, A. C. D., 1987 The chemical constitution of clays Chemistry of Clays and Clay Minerals New York John Wiley & Sons 1128.Google Scholar
Oldfield, E., Kinsey, R. A., Smith, K. A., Nichols, J. A. and Kirkpatrick, R. J., 1983 High-resolution NMR of inorganic solids. Influence of magnetic centers on magic-angle sample-spinning line shapes in some natural aluminosilicates J. Mag. Resonance 51 325329.Google Scholar
Pollastro, R. M., 1985 Mineralogical and morphological evidence for the formation of illite at the expense of illite/ smectite Clays & Clay Minerals 33 265274 10.1346/CCMN.1985.0330401.CrossRefGoogle Scholar
Samoson, A., 1985 Satellite transition high-resolution NMR of quadrupole nuclei in powders Chem. Phys. Lett. 119 2932 10.1016/0009-2614(85)85414-2.CrossRefGoogle Scholar
Sanz, J. and Serratosa, J. M., 1984 29-Si and 27-Al high-resolution MAS-NMR spectra of phyllosilicates J. Am. Chem. Soc. 106 47904793 10.1021/ja00329a024.CrossRefGoogle Scholar
Schroeder, P. A., 1990 Far-infrared, X-ray diffraction and chemical investigation of potassium micas Amer. Mineral. 75 983991.Google Scholar
Schroeder, P. A., 1992a Far-infrared study of the interlayer torsional-vibrational mode of mixed-layer illite/smectites Clays & Clay Minerals 40 8191 10.1346/CCMN.1992.0400109.CrossRefGoogle Scholar
Schroder, P. A., 1992b A multiple reaction mechanism (MRM) model for illitization during burial diagenesis 29th International Geological Congress, Kyoto, Japan, 29th IGC Workshop WB–1 7988.Google Scholar
Środoń, J., McHardy, F E W J and Morgan, D. J., 1992 Chemistry of illite-smectite inferred from TEM measurements of fundamental particles Clay Miner. 27 137158 10.1180/claymin.1992.027.2.01.CrossRefGoogle Scholar
Środoń, J., Morgan, D. J., Eslinger, E. V., Eberl, D. D. and Karlinger, M. R., 1986 Chemistry of illite/smectite and end-member illite Clays & Clay Minerals 34 368378 10.1346/CCMN.1986.0340403.CrossRefGoogle Scholar
Surdam, R. C. and Crossey, L. J., 1987 Integrated diagenetic modeling: A process-oriented approach for clastic systems Ann. Rev. Earth Planet. Sci. 15 141170 10.1146/annurev.ea.15.050187.001041.CrossRefGoogle Scholar
Taulelle, F., Bessada, C. and Massiot, D., 1992 Quantitative analysis of MAS NMR quadrupole nuclei J. de Chimie Physique 89 379385 10.1051/jcp/1992890379.CrossRefGoogle Scholar
Taylor, R. M., Brindley, G. W. and Brown, G., 1980 Non-silicate oxides and hydroxides Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 129201.Google Scholar
Tellier, K. E., Hulchy, M. M., Walker, J. R. and Reynolds, R. C., 1988 Application of high gradient magnetic separation (HGMS) to structural and compositional studies of clay mineral mixtures J. Sed. Petrology 58 761763 10.1306/212F8E54-2B24-11D7-8648000102C1865D.CrossRefGoogle Scholar
Whitney, G. and Northrop, H. R., 1988 Experimental investigation of the smectite to illite reaction: Dual reaction mechanism and oxygen-isotope systematics Amer. Mineral. 73 7790.Google Scholar
Woessner, D. E., 1989 Characterization of clay minerals by 27-Al nuclear magnetic resonance spectroscopy Amer. Mineral. 74 203215.Google Scholar