Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T14:43:26.505Z Has data issue: false hasContentIssue false

Chemical Characterization, Structural Features, and Thermal Behavior of Sodium and Hydrogen Octosilicate

Published online by Cambridge University Press:  02 April 2024

G. Borbély
Affiliation:
Central Research Institute of Chemistry of the Hungarian, Academy of Sciences, Budapest, Hungary
H. K. Beyer
Affiliation:
Central Research Institute of Chemistry of the Hungarian, Academy of Sciences, Budapest, Hungary
H. G. Karge
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
W. Schwieger
Affiliation:
Sektion Chemie, WB Technische Chemie, Martin-Luther-Universität, Halle, Germany
A. Brandt
Affiliation:
Sektion Chemie, WB Technische Chemie, Martin-Luther-Universität, Halle, Germany
K.-H. Bergk
Affiliation:
Sektion Chemie, WB Technische Chemie, Martin-Luther-Universität, Halle, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chemical composition and the thermal behavior of sodium and hydrogen octosilicate was studied by chemical and thermal analysis, infrared (IR), magic-angle-spinning nuclear magnetic resonance (MAS-NMR) spectroscopy, and X-ray diffractometry. Both compounds are layer silicates with basal spacings of 11.10 and 7.38 Å, respectively. In both forms the ratio of Q4 silicon (connected via oxygen bridges with four silicon atoms) to Q3 silicon (connected with only three other Si atoms) is 1. At least a small part of the Q4 silicon can be substituted by aluminum. Elimination of water coordinated to the cations in sodium octosilicate results in a concomitant structural collapse. Replacement of the sodium ions by protons affects the atomic arrangement in the sheets only to a minor degree, but results in a decrease of the periodicity along the crystallographic c axis. Upon heat treatment an endothermal structural rearrangement occurs at about 360 K as revealed by significant changes of the IR and 29Si MAS-NMR spectra. Reexchange with Na ions largely, but not completely, restores the structure of the parent octosilicate.

The X-ray diffraction pattern of sodium octosilicate was indexed in the monoclinic system with a = 7.345 Å, b = 12.74 Å, c = 11.25 Å and β = 99.3°. Based on conclusions drawn from the results of the present study, the X-ray pattern of hydrogen octosilicate was tentatively indexed in the monoclinic system with a = 7.345 Å, b = 12.74 Å, c = 8.51 Å and β = 119.8°.

Type
Research Article
Copyright
Copyright © 1991, The Clay Minerals Society

References

Annehed, H., Faeth, L. and Lincoln, F. J., 1982 Crystal structure of synthetic makatite Na2Si4O8(OH)2-4H2O Z. Kristallogr. 154 203210.CrossRefGoogle Scholar
Beyer, H. K., Belenykaja, I. M., Dubinin, M. M. and Kiss, A., 1980 Properties of ion-exchanged forms of stilbite and heulandite Izv. Akad. Nauk SSSR, Ser. Khim. 29 865870.Google Scholar
Brindley, G. W., 1969 Unit cell of magadiite in air, in vacuo, and under other conditions Amer. Mineral. 54 15831591.Google Scholar
Garcés, J. M., Rocke, S. C., Crowder, C. E. and Hasha, D. L., 1988 Hypothetical structures of magadiite and sodium octosilicate and structural relationships between layered alkali metal silicates and the mordenite- and pentasil-group zeolites Clays & Clay Minerals 36 409418.CrossRefGoogle Scholar
Gilson, J.-P. Edwards, G. C., Peters, A. W., Rajagopalan, K., Wormsbecher, R. F., Roberie, T. G. and Shatlock, M. P., 1987 Penta-co-ordinated aluminum in zeolites and aluminosilicates J. Chem. Soc, Chem. Commun. 9192.CrossRefGoogle Scholar
Heidemann, D., Schwieger, W. and Bergk, K.-H., 1987 Hochauflösende 29Si-Festkörper-NMR-Untersuchungen an synthetischen siliciumreichen Kieselsäurehydraten Z. anorg. allg. Chem. 555 129142.CrossRefGoogle Scholar
Iler, R. K., 1964 Ion exchange properties of a crystalline hydrated silica J. Colloid Sci. 19 648657.CrossRefGoogle Scholar
Jacobs, P. A., Uytterhoeven, J. B., Beyer, H. K. and Kiss, A., 1979 Preparation and properties of hydrogen form of stilbite, heulandite and clinoptilolite zeolites J. Chem. Soc, Faraday Trans. I 75 883891.CrossRefGoogle Scholar
Klug, H. P. and Alexander, L. E., 1974 X-ray diffraction procedures for polycrystalline and amorphous materials 2nd ed. London John Wiley & Sons 791860.Google Scholar
McCulloch, L., 1952 A new highly silicious soda-silica compound J. Amer. Chem. Soc. 74 24532456.CrossRefGoogle Scholar
Schwieger, W., Heidemann, D. and Bergk, K.-H., 1985 High-resolution solid-state silicon-29 nuclear magnetic resonance spectroscopic studies of synthetic sodium silicate hydrates Rev. Chim. Mineral. 22 639650.Google Scholar
Wolf, F. and Schwieger, W., 1979 Zum Ionenaustausch einwertiger Kationen an synthetischen Natriumpolysilikaten mit Schichtstruktur Z. anorg. allg. Chem. 457 224228.CrossRefGoogle Scholar