Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T14:46:03.781Z Has data issue: false hasContentIssue false

Chemical Changes and Genesis of Secondary Minerals During the Alteration of Biotites from Ignimbrites in the Tazzeka Mountain (Morocco)

Published online by Cambridge University Press:  28 February 2024

Jean Dejou
Affiliation:
1, rue des Raux, 15250 Jussac, France
Christian De Kimpe
Affiliation:
Agriculture and Agri-Food Canada, Research Branch, Sir John Carling Building, 930 Carling Avenue, Ottawa, Ontario, Canada K1A 0C5
Jean-Jacques Macaire
Affiliation:
EA 2100—Laboratoire de Géologie des Environnements Aquatiques Continentaux, Université François Rabelais, Parc de Grandmont, 37200 Tours, France
Alain Perruchot
Affiliation:
EP CNRS 1748, Université de Paris-Sud, Bâtiment 504, 91045 Orsay Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Tazzeka Mountain, located approximately 20 km south of Taza, eastern Morocco, is composed of a Westphalian volcano-sedimentary complex. It contains rhyolitic ignimbrites with the following minerals: quartz, potassium feldspar, oligoclase-andesine, and biotite. The ignimbrites are extensively altered because of a dense network of fractures in the massif. Alteration has resulted in the formation of spheroidal rocks and saprolite, the thickness of which depends on local topography. The evolution of the biotites in the ignimbrites was investigated by microprobe analysis of the mica crystals. This technique provides data that are not accessible through classical analytical methods. Biotites are transformed into secondary clay minerals, mainly chlorites and illites; intermediate stages are related to the degree of alteration of biotite, the latter being expressed by the K2O content which decreases progressively from 7.3 to 1.3%. Next come protochlorites and chlorites sensu stricto, in which the K2O content is 0.3%. Several processes including retrodiagenesis, hydrothermal activity, fumarolic activity, and geochemical weathering contributed to the transformation of the biotites at Tazzeka.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Bisdom, E.D.A. Stoops, G. Delvigne, J. Curmi, P. and Altemuller, H.J., 1982 Micromophology of weathered biotite and its secondary products Pédologie 32 225252.Google Scholar
Butuzova, G.Y., 1996 Iron ore sediments of the fumarole field of Santorini volcano, their composition and origin Døklady Akademie Nauk SSSR 168 14001402.Google Scholar
Chalot-Prat, F., 1986 Mise en évidence d’une dépression vol-cano-tectonique associée à d’épais épanchments ignimbri-tiques hercyniens dans le Massif du Tazzeka (Maroc oriental) Revue de Geologie Dynamique et de Geographie Physique 27 193203.Google Scholar
Chalot-Prat, F., 1990 Pétrogenèse d’un volcanisme intracon-tinental tardi-orogénique hercynien. Etude du complexe volcanique carbonifère du Tazzeka et des zones volcaniques comparables dans le Mekam et la région de Jeradu (Maroc oriental) .Google Scholar
Chalot-Prat, F. and Cabanis, B., 1989 Découverte dans les volcanites carbonifères du Tazzeka (Maroc oriental) de la coexistence de diverses séries basiques, d’une série acide et d’importants phénomènes de mélanges Comptes Rendus de l’Académie des Sciences de Paris, Série II 308 739745.Google Scholar
Chalot-Prat, F. and Galtier, J., 1989 Découverte d’un tronc de gymnosperme dans une coulée du complexe volcanique carbonifère du Tazzeka (Maroc oriental) et sa signification paléoécologique Comptes Rendus de l’Académie des Sciences de Paris, Série II 309 17351741.Google Scholar
Chalot-Prat, F. and Vachard, D., 1989 Découvertes de For-aminifères serpoukhoviens (Namurien inférieur) dans la série volcano-sédimentaire du Tazzeka (Maroc oriental) Comptes Rendus de l’Académie des Sciences de Paris, Série II 308 11571160.Google Scholar
Chevalier, Y., 1984 Altération météorique actuelle et paléoaltérations du socle provençal (France). Evolution comparée des roches et des eaux de lessivage cordrespondantes. Etude physico-chimique, mécanique, minéralogique et hydrogéochimique .Google Scholar
Deer, W.A. Howie, R.A. and Zussman, J., 1964 Rock-Forming Minerals. Volume 3, Sheet Silicates London Longman.Google Scholar
Dostal, J. Jackson, G.D. and Galley, A., 1989 Geochemistry of neohelikian Nanynt plateau basalts, Border rift basin, northwestern Baffin Island, Canada Canadian Journal of Earth Sciences 26 22142223 10.1139/e89-188.CrossRefGoogle Scholar
Dudoignon, P. Beaufort, D. and Galley, A., 1988 Hydrothermal and supergene alterations in the granitic cupola of Montebras, Creuse, France Clays and Clay Minerals 36 505520 10.1346/CCMN.1988.0360604.CrossRefGoogle Scholar
Eitel, W., 1966 Silicate Science. Volume 4. Hydrothermal silicate system New York Academic Press.Google Scholar
Galtier, J. Phillips, T.L. and Chalot-Prat, F., 1986 Euramerican coal-swamp plants in mid-carboniferous of Morocco Review of Palaeobotany and Palynology 49 9398 10.1016/0034-6667(86)90068-0.CrossRefGoogle Scholar
Georgalas, G.C., 1940 Die postvulkanische Fumarolentätig-keit und der Wärmehaushalt des Santorin-Vulkans Bulletin of Volcanology, Series II 6 237242 10.1007/BF02994883.CrossRefGoogle Scholar
Georgalas, G.C. and Papastamatiou, J., 1951 Über den Aus-bruch des Santorin-Vulkans von 1939–1941. Der Ktenas-Ausbruch Bulletin of Volcanology, Series II 11 337 10.1007/BF02596027.CrossRefGoogle Scholar
Georgalas, G.C. and Papastamatiou, J., 1953 L’éruption du volcan de Santorin en 1939–1941. L’éruption du dôme Fouque Bulletin of Volcanology, Series II 13 338 10.1007/BF02596789.CrossRefGoogle Scholar
Glasmann, J.R. and Simonson, G.A., 1985 Alteration of basalt in soils of western Oregon Soil Science Society of America Journal 49 262273 10.2136/sssaj1985.03615995004900010053x.CrossRefGoogle Scholar
Hey, M.H., 1954 A new review of chlorites Mineralogical Magazine 30 277292 10.1180/minmag.1954.030.224.01.CrossRefGoogle Scholar
Huvelin, P., 1986 Le Carbonifère du Tazzeka (Maroc). Volcanisme et phénomènes de resédimentation Comptes Rendus de l’Académie des Sciences de Paris, Série II 303 14831488.Google Scholar
Kodosky, L.G. and Keith, T.E.C., 1995 Further insights into the geochemical evolution of fumarolic alteration, Valley of Ten Thousand Smokes, Alaska Journal of Volcanic and Geothermal Research 65 181190 10.1016/0377-0273(94)00117-Y.CrossRefGoogle Scholar
McKeague, J.A. and De Kimpe, C.R., 1978 Manuel de méthodes d’échantillonnage et d’analyse des sols. Ottawa Canadian Society of Soil Science.Google Scholar
Melka, K., 1966 New suggestions for the subdivision of the chlorite group Proceedings of the International Clay Conference, Jerusalem 1 2731.Google Scholar
Meunier, A., 1977 Les mécanismes de l’altération des granites et le rôle des microsystèmes. Etude des arènes du massif granitique de Parthenay (Deux-Sèvres) .Google Scholar
Newman, A., 1987 The Chemistry of Clay and Clay Minerals. Monograph Number 6. London Mineralogical Society.Google Scholar
Parneix, J.C. Beaufort, D. Dudoignon, P. and Meunier, A., 1985 Biotite chloritization process in hydrothermally altered granites Chemical Geology 51 89101 10.1016/0009-2541(85)90089-0.CrossRefGoogle Scholar
Penven, M.J. Fedoroff, N. and Robert, M., 1981 Altération météorique des biotites en Algérie Geoderma 26 287309 10.1016/0016-7061(81)90025-2.CrossRefGoogle Scholar
Rimsaite, J.H.Y., 1967 Studies of rock-forming micas Geological Survey of Canada. Energy, Mines, and Resources Bulletin Number 149 .CrossRefGoogle Scholar
Robillard, D., 1978 Etude structurale du Moyen Atlas septentrional (région de Taza, Maroc) .Google Scholar
Roubault, M. Fabriès, J. Touret, J. and Weisbrod, A.A., 1963 Détermination des minéraux des roches au microscope polarisant .Google Scholar
von Schorin, H., 1980 Zersetzung von Kalk-Alkali-Gesteinen im rezenten Fumarolengebiet Geologische Rundschau 69 226244 10.1007/BF01869035.CrossRefGoogle Scholar
Seddoh, F.K., 1973 Altération des roches cristallines en Mor-van. Etude minéralogique, géochimique et micromorphologique .Google Scholar
Shoji, S. Fujiwara, Y. Yamada, I. and Saigusa, M., 1982 Chemical and clay mineralogy of andosoils, brown forest soils and podzolic soils formed from recent Towada ashes, northeastern Japan Soil Science 133 6986 10.1097/00010694-198202000-00001.CrossRefGoogle Scholar
Stringham, B., 1964 Hydrothermal alteration of ignimbrites, Beaver County, Utah Geological Society of America Special Paper 76 294.Google Scholar
Tazaki, K. and Fyfe, W.S., 1987 Primitive clay precursors formed on feldspar Canadian Journal of Earth Sciences 24 506527 10.1139/e87-051.CrossRefGoogle Scholar
Weaver, C.E. and Pollard, L.D., 1973 Developments in Sedimentology The Chemistry of Clay Minerals Amsterdam Elsevier.Google Scholar
Wiewiora, A. and Zeiss, Z., 1990 Crystallochemical classification of phyllosilicates based on the unified system of projection of chemical composition. II. The chlorite group Clay Minerals 25 8392 10.1180/claymin.1990.025.1.09.CrossRefGoogle Scholar