Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T21:17:16.893Z Has data issue: false hasContentIssue false

Charge Reduction, Octahedral Charge, and Lithium Retention in Heated, Li-Saturated Smectites

Published online by Cambridge University Press:  02 April 2024

W. F. Jaynes
Affiliation:
Department of Agronomy, The Ohio State University, Columbus, Ohio 43210
J. M. Bigham
Affiliation:
Department of Agronomy, The Ohio State University, Columbus, Ohio 43210
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Reference smectites were examined to determine relationships between Li uptake, cation-exchange capacity (CEC), and octahedral layer charge after Li saturation and heating at 250°C (Hofmann-Klemen effect). Direct measurements of exchangeable Li after heating led to overestimates of charge reduction due to entrapment of Li in collapsed interlayers. Expansion of interlayers by sequential washings with 1 N MgCl2, 0.01 N MgCl2, and ethanol and subsequent determinations of exchangeable Mg provided accurate measurements of reduced charge. The CEC reductions observed in dioctahedral samples as a result of Li saturation and heating equaled octahedral charge values derived from published mineral formulae, and interlayer charge estimates obtained by alkylammonium exchange confirmed that measured CEC reductions were a consequence of uniform decreases in octahedral layer charge.

Dioctahedral specimens retained 1 to 10 meq/100 g of non-exchangeable Li in excess of CEC reduction and were acidified in direct proportion to their total Fe contents, apparently as a result of the deprotonation of structural hydroxyl groups. Mild acid treatment reprotonated these hydroxyl groups, released excess Li, and resulted in total Li contents comparable to measured CEC reductions. Heating (250°C) Mg-saturated hectorite induced a loss of octahedral Li, acidification, and a reduction of CEC, indicating that Mg had partially replaced octahedral Li. These results suggest that octahedral Li is mobile at low temperatures and that cation movement into or out of the octahedral sheet is favored if the layer charge is reduced.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

Footnotes

1

Journal Article No. 57-87.

References

Ames, L. L. Jr. Sand, L. B. and Goldich, S. S., 1958 A contribution on the Hector, California, bentonite deposit Econ. Geol. 53 2237.CrossRefGoogle Scholar
Brindley, G. W. and Ertem, G., 1971 Preparation and solvation properties of some variable charge montmorillon-ites Clays & Clay Minerals 19 399404.CrossRefGoogle Scholar
Byström-Brusewitz, A. M. and Bailey, S. W., 1976 Studies of the Li test to distinguish beidellite and montmorillonite Proc. Int. Clay Conf., Mexico City, 1975 Illinois Applied Publishing, Wilmette 419428.Google Scholar
Calvet, R. and Prost, R., 1971 Cation migration into empty octahedral sites and surface properties of clays Clays & Clay Minerals 19 175186.CrossRefGoogle Scholar
Clementz, D. M. and Mortland, M. M., 1974 Properties of reduced-charge montmorillonite: Tetra-alkylammonium ion exchange forms Clays & Clay Minerals 22 223229.CrossRefGoogle Scholar
Farmer, V. C., Russell, J. D. and Bailey, S. W., 1967 Infrared absorption spectrometry in clay studies Clays and Clay Minerals, Proc. 15th Natl. Conf., Pittsburgh, Pennsylvania, 1966 New York Pergamon Press 121142.Google Scholar
Glaeser, R., Beguinot, S. and Méring, J., 1972 Détection et dénombrement des charges à localisation tétraédrique dans les smectites di-octaédriques CR. Acad. Sci. Paris 214 14.Google Scholar
Greene-Kelly, R., 1953 The identification of montmoril-lonoids in clays J. Soil Sci. 4 233237.CrossRefGoogle Scholar
Grim, R. E. and Güven, N., 1978 Bentonites—Geology, Mineralogy, Properties and Uses Amsterdam Elsevier 2425.Google Scholar
Hofmann, U. and Kiemen, R., 1950 Verlust der Aus-tauschfahigkeit von Lithiumionen an Bentonit durch Erhitzung Z. Anorg. Allg. Chem. 262 9599.CrossRefGoogle Scholar
Jaynes, W. F. and Bigham, J. M., 1986 Multiple cation-exchange capacity measurements on standard clays using a commercial mechanical extractor Clays & Clay Minerals 34 9398.CrossRefGoogle Scholar
Kittrick, J. A., 1960 Cholesterol as a standard in the X-ray diffraction of clay minerals Proc. Soil Sci. Soc. Amer. 24 1720.CrossRefGoogle Scholar
Knechtel, M. M. and Patterson, S. H., 1962 Bentonite deposits of the northern Black Hills district, Wyoming, Montana, and South Dakota U.S. Geol. Surv. Bull. 1082–M 957958.Google Scholar
Lagaly, G., 1981 Characterization of clays by organic compounds Clay Miner. 16 121.CrossRefGoogle Scholar
Lagaly, G., Weiss, A. and Heller, L., 1969 Determination of the layer charge in mica-type layer silicates Proc. Int. Clay Conf., Tokyo, 1969, Vol. 1 Jerusalem Israel Univ. Press 6180.Google Scholar
Lagaly, G., Weiss, A. and Bailey, S. W., 1976 The layer charge of smectitic layer silicates Proc. Int. Clay Conf, Mexico City, 1975 Wilmette, Illinois Applied Publishing 157172.Google Scholar
Lim, C. H. and Jackson, M. L., 1986 Expandable phyllo-silicate reactions with lithium on heating Clays & Clay Minerals 34 346352.CrossRefGoogle Scholar
Maes, A., Stul, M. S. and Cremers, A., 1979 Layer charge-cation-exchange capacity relationships in montmorillonite Clays & Clay Minerals 27 387392.CrossRefGoogle Scholar
Méring, J., 1949 L’interférence des rayons-X dans les systèmes à stratification désordonnée Acta Crystallogr. 2 371377.CrossRefGoogle Scholar
Norrish, K. and Serratosa, J. M., 1973 Factors in the weathering of mica to vermiculite Proc. Int. Clay Conf, Madrid, 1972 Madrid Div. Ciencias C.S.I.C 417432.Google Scholar
Post, J. L., 1984 Saponite from near Ballarat, California Clays & Clay Minerals 32 147153.CrossRefGoogle Scholar
Rozenson, I. and Heller-Kallai, L., 1976 Reduction and oxidation of Fe3+ in dioctahedral smectites—1: Reduction with hydrazine and dithionite Clays & Clay Minerals 24 271282.CrossRefGoogle Scholar
Rüehlicke, G. and Kohler, E. E., 1981 A simplified procedure for determining layer charge by the n-alkylammo-nium method Clay Miner. 16 305307.CrossRefGoogle Scholar
Russell, J. D., 1979 An infrared spectroscopic study of the interaction of nontronite and ferruginous montmorillonites with alkali metal hydroxides Clay Miner. 14 127137.CrossRefGoogle Scholar
Rutledge, E. M., Wilding, L. P. and Elfieid, M., 1967 Automated particle-size separation by sedimentation Soil Sci. Soc. Amer. Proc. 31 287288.CrossRefGoogle Scholar
Schneiderhörn, P., 1965 Nontronit vom Hohen Hagen und Chloropal vom meenser Steinberg bei Göttingen Tscher-maks Min. Petr. Mitt. 10 386399.Google Scholar
Stul, M. S. and Mortier, W. J., 1974 The heterogeneity of the charge density in montmorillonites Clays & Clay Minerals 22 391396.CrossRefGoogle Scholar
Tettenhorst, R., 1962 Cation migration in montmorillonites Amer. Mineral. 47 769773.Google Scholar
van Olphen, H. and Fripiat, J. J., 1979 Data Handbook for Clay Materials and Other Non-metallic Minerals Oxford Pergamon Press.Google Scholar
Wada, K., Harada, Y. and Heller, L., 1969 Effects of salt concentration and cation species on the measured cation-exchange capacity of soils and clays Proc. Int. Clay Conf, Tokyo, 1969, Vol. 1 Jerusalem Israel Univ. Press 561571.Google Scholar