Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-07T14:02:33.218Z Has data issue: false hasContentIssue false

Characterization Study of some Bauxite Deposits in Northern Brazil

Published online by Cambridge University Press:  02 April 2024

Barbara da Rocha Pereira
Affiliation:
LAREX Laboratory of Recycling, Waste Treatment, and Extraction - Chemical Engineering, Department of Polytechnic School of University of Sao Paulo (USP), São Paulo, Brazil
Morgana Rosset*
Affiliation:
LAREX Laboratory of Recycling, Waste Treatment, and Extraction - Chemical Engineering, Department of Polytechnic School of University of Sao Paulo (USP), São Paulo, Brazil
José Diogo de Oliveria Lima
Affiliation:
MRN Mineração Rio Do Norte, District of Porto de Trombetas, Pará, Brazil
Keila Palheta Gomes
Affiliation:
MRN Mineração Rio Do Norte, District of Porto de Trombetas, Pará, Brazil
Denise Crocce Romano Espinosa
Affiliation:
LAREX Laboratory of Recycling, Waste Treatment, and Extraction - Chemical Engineering, Department of Polytechnic School of University of Sao Paulo (USP), São Paulo, Brazil
Jorge Alberto Soares Tenório
Affiliation:
LAREX Laboratory of Recycling, Waste Treatment, and Extraction - Chemical Engineering, Department of Polytechnic School of University of Sao Paulo (USP), São Paulo, Brazil

Abstract

Alumina is produced from bauxite, which contains a mixture of various oxides, such as aluminum (Al), iron (Fe), silicon (Si), and titanium (Ti). Bauxite can also be considered a source of several other valuable metals, such as scandium (Sc), vanadium (V), and gallium (Ga). The composition and mineralogy of alumina determine their economic value, but their characteristics vary by locality. The physicochemical characteristics of bauxites can also be influenced largely by weathering processes, even within the same locality. For this reason, the present study was undertaken with the objective of comparing the characterization data of three bauxite samples collected, which will be referred to as D, E, and F, from the Cruz Alta do Pará plateau in northern Brazil. The samples were solubilized by multi-acid digestion and fusion with lithium metaborate to quantify their metal compositions by inductively coupled plasma optical emission spectrometry (ICP-OES). The mineralogical characterization was conducted by X-ray diffraction (XRD), and the phase changes of minerals in bauxite were detected by thermogravimetric analysis (TGA/DTG). The total organic carbon (TOC) technique was used to quantify the C in the samples, and the moisture content was also measured. Alumina was 30 wt.% on average for all samples, good for producing high-purity alumina by hydrometallurgical processes. The results, however, showed high (~20 at.%) silica concentrations in two samples and ~3 wt.% Fe in one sample, which can pose a challenge in the Bayer process. The X-ray diffraction (XRD) analysis showed that gibbsite (Gbs), kaolinite (Kln), anatase (Ant), and hematite (Hem) were the major mineral phases in these samples. The study showed that the samples from the same mine vary in their metal content, especially with regard to Si, and they, thus, need to be processed selectively to maximize their economic value.

Type
Review
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Yuji Arai

References

Abdulvaliyev, R.A., Dyussenova, S.B., Manapova, A.I., Akcil, A., Beisenbiyeva, U.Z. 2021 Modification of the phase composition of low-grade gibbsite-kaolinite bauxites Kompleksnoe Ispolʹzovanie Mineralʹnogo Syrʹâ/complex Use of Mineral Resources/mineraldik Shikisattardy Keshendi Paidalanu 317 94102CrossRefGoogle Scholar
Abedini, A., Mongelli, G., Khosravi, M. 2022 Geochemistry of the early Jurassic Soleiman Kandi karst bauxite deposit, Irano-Himalayan belt, NW Iran: Constraints on bauxite genesis and the distribution of critical raw materials Journal of Geochemical Exploration 241,CrossRefGoogle Scholar
Abedini, A., Khosravi, M., Mongelli, G. 2022 The middle Permian pyrophyllite-rich ferruginous bauxite, northwestern Iran, Irano-Himalayan karst belt: Constraints on elemental fractionation and provenance Journal of Geochemical Exploration 233,CrossRefGoogle Scholar
Agrawal, S., Dhawan, N. 2021 Evaluation of microwave acid baking on Indian red mud sample Minerals Engineering 160,CrossRefGoogle Scholar
Ahmad, I., Hartge, E.U., Werther, J., Wischnewski, R. 2014 Bauxite washing for the removal of clay International Journal of Minerals, Metallurgy and Materials 21 10451051, 2014IJMMM..21.1045A,CrossRefGoogle Scholar
Alelweet, O., Pavia, S. 2022 Pozzolanic and hydraulic activity of bauxite for binder production Journal of Building Engineering 51CrossRefGoogle Scholar
Arogundade, A.I., Megat-yusoff, PSM, Ahmad, F., Bhat, A.H., Afolabi, L.O. 2021 Modification of bauxite residue with oxalic acid for improved performance in intumescent coatings Journal of Materials Research and Technology 12 679687,CrossRefGoogle Scholar
Banerjee, P.K., Mankar, A.U., & Kumar, V. (2023) Beneficiation of bauxite ores. P. in: Mineral Processing: Beneficiation Operations and Process Optimization through Modeling. INC, 117166 ppCrossRefGoogle Scholar
Baudín, C. (2021) Alumina, Structure and Properties. Pp. 2546 in: Encyclopedia of Materials: Technical Ceramics and Glasses. Elsevier.CrossRefGoogle Scholar
Behmadi, R., Mokhtarian, M., Ghadrian, K., Davoodi, A., Hosseinpour, S. 2022 Development of a low-cost activated mesoporous bauxite for the reclamation of used transformer oil Separation and Purification Technology 280,CrossRefGoogle Scholar
Botelho, ABJ, Espinosa, DCR, Tenório, JAS 2020 Characterization of Bauxite Residue from a Press Filter System: Comparative Study and Challenges for Scandium Extraction Mining, Metallurgy & Exploration 38 16Google Scholar
Botelho, ABJ, Crocce, D.E., Tenório, JAS 2021 Selective separation of Sc (III) and Zr (IV) from the leaching of bauxite residue using trialkylphosphine acids, tertiary amine, tri-butyl phosphate and their mixtures Separation and Purification Technology 279 13Google Scholar
Castaldi, P., Silvetti, M., Santona, L., Enzo, S., Melis, P. 2008 XRD, FTIR, and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals Clays and Clay Minerals 56 461469, 2008CCM....56..461C,CrossRefGoogle Scholar
Castaldi, P., Silvetti, M., Enzo, S., Deiana, S. 2011 X-ray diffraction and thermal analysis of bauxite ore-processing waste (red mud) exchanged with arsenate and phosphate Clays and Clay Minerals 59 189199, 2011CCM....59..189C,CrossRefGoogle Scholar
César, C., Melo, A., Simões, R., Patrícia, S., Paz, A. 2020 A proposal for rapid grade control of gibbsitic bauxites using multivariate statistics on XRD data Minerals Engineering 157Google Scholar
Chen, Z., Wang, Y., Liao, S., Huang, Y. 2020 Grinding kinetics of waste glass powder and its composite effect as pozzolanic admixture in cement concrete Construction and Building Materials 239,CrossRefGoogle Scholar
Chu, TPM, Nguyen, N.T., Vu, T.L., Dao, T.H., Dinh, L.C., Nguyen, H.L., Hoang, T.H., Le, T.S., Pham, T.D. 2019 Synthesis, characterization, and modification of alumina nanoparticles for cationic dye removal Materials 12 450 115CrossRefGoogle ScholarPubMed
Clark, M.W., Johnston, M., Reichelt-Brushett, A.J. 2015 Comparison of several different neutralisations to a bauxite refinery residue: Potential effectiveness environmental ameliorants Applied Geochemistry 56 110, 2015ApGC...56....1C,CrossRefGoogle Scholar
Dani, N., Formoso, MLL, Decarreau, A., Meunier, A. 2001 Nordstrandite in bauxite derived from phonolite, lages, Santa Catarina, Brazil Clays and Clay Minerals 49 216226, 2001CCM....49..216D,CrossRefGoogle Scholar
Dillinger, B., Batchelor, A., Katrib, J., Dodds, C., Suchicital, C., Kingman, S., Clark, D. 2020 Microwave digestion of gibbsite and bauxite in sodium hydroxide Hydrometallurgy 192,CrossRefGoogle Scholar
Dodoo, D., Ellen, G., Seguwa, E., Yawson, C., Appiah, G., Suleiman, N., Yaya, A. 2022 Eco-efficient treatment of hazardous bauxite liquid-residue using acid-activated clays Cleaner Chemical Engineering 3CrossRefGoogle Scholar
Fabre, C., Buche, P., Rouau, X., Mayer-laigle, C. 2020 Milling itineraries dataset for a collection of crop and wood by-products and granulometric properties of the resulting powders Data in Brief 33, 33163591, 7599431CrossRefGoogle ScholarPubMed
Freitas, V., Hulmann, A., Zimmer, J., Barbeiro, L., Gomes, R., Thomy, M., Dultra, M. 2018 Soil quality and reforestation of the Brazil nut tree (Bertholletia excelsa Bonpl.) after laterite-type bauxite mining in the Brazilian Amazon forest Ecological Engineering 125 111118Google Scholar
Giels, M., Hertel, T., Gijbels, K., Schroeyers, W., Pontikes, Y. 2022 High performance mortars from vitrified bauxite residue; the quest for the optimal chemistry and processing conditions Cement and Concrete Research 155,CrossRefGoogle Scholar
Gräfe, M., Power, G., Klauber, C. 2011 Bauxite residue issues: III Alkalinity and Associated Chemistry. Hydrometallurgy 108 6079Google Scholar
Habashi, F. (1997). Handbook of Extractive Metallurgy. Volume II: Primary Metals, Secondary Metals, Light Metals. Heidelberg, Germany: Wiley-VCH.Google Scholar
Hill, V.G. 1980 Proceedings, 4th International Congress for the Study of Bauxites, Alumina and Aluminum. Vol. 1, Bauxites; Vol. 2, Bauxites; Vol. 3, Alumina and Aluminum Clays and Clay Minerals 28 70, 1980CCM....28...70H,CrossRefGoogle Scholar
Jiang, Z., Quan, X., Zhao, S., Zeng, K., Chen, H., Zhou, Y. 2021 Dealkalization and leaching behavior of Fe, Al, Ca, and Si of Red Mud by waste acid from titanium white production ACS Omega 6 3279832808,, 34901629, 8655946CrossRefGoogle ScholarPubMed
Khairul, M.A., Zanganeh, J., Moghtaderi, B. 2019 The composition, recycling and utilisation of Bayer red mud Resources, Conservation and Recycling 141 483498CrossRefGoogle Scholar
Kyriakogona, K., Giannopoulou, I., Panias, D. 2017 Extraction of aluminium from Kaolin: A comparative study of hydrometallurgical processes Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering 133 27Google Scholar
Lagauche, M., Larmier, K., Jolimaitre, E., Barthelet, K. 2017 Thermodynamic characterization of the hydroxyl group on the γ - alumina surface by the energy distribution function Journal of Physical Chemistry C 121 16770167822,CrossRefGoogle Scholar
Li, C., Tang, L., Jiang, J., Zhu, F., Zhou, J., Xue, S. 2020 Alkalinity neutralization and structure upgrade of bauxite residue waste via synergistic pyrolysis with biomass Journal of Environmental Sciences 93 4147,CrossRefGoogle ScholarPubMed
Li, P., Yu, W., Du, Y., Lai, X., Weng, S., Pang, D., Xiong, G., Lei, Z., Zhao, S., Yang, S. 2020 Influence of geomorphology and leaching on the formation of Permian bauxite in northern Guizhou Province, South China Journal of Geochemical Exploration 210,CrossRefGoogle Scholar
Li, H., Chai, W., Cao, Y., Yang, S. 2022 Flotation enhancement of low-grade bauxite using oxalic acid as surface pretreatment agent Applied Surface Science 577,CrossRefGoogle Scholar
Liu, R.X., Poon, C.S. 2016 Effects of red mud on properties of self-compacting mortar Journal of Cleaner Production 135 11701178CrossRefGoogle Scholar
Liu, S., Li, Q., Xie, G., Li, L., Xiao, H. 2016 Effect of grinding time on the particle characteristics of glass powder Powder Technology 295 133141,CrossRefGoogle Scholar
Liu, S., Zhang, J., Sun, Z., Han, D. 2023 Effects of temperature and pressure fluctuations on exergy loss characteristics of hydrogen auto-ignition processes International Journal of Hydrogen Energy 48 3848438495,CrossRefGoogle Scholar
Luo, J., Rao, M., Liu, M., Li, G., Jiang, T. 2014 (2014) Extraction of Alumina from Coal-Derived Pyrite Flotation Tailing by Pre-Desilication-Bayer Process Light Metals 9781118889 125130Google Scholar
Manjare, S.D., Donolikar, Y. 2022 Effect of atmospheric and operational variables on dispersion of bauxite particulates at Mormugaon Port, Goa, India Materials Today: Proceedings 67 11901196,Google Scholar
Melo, CCA, Angélica, R.S., Paz, SPA 2020 A proposal for rapid grade control of gibbsitic bauxites using multivariate statistics on XRD data Minerals Engineering 157,CrossRefGoogle Scholar
Mohan, B., Kloss, C., Khinast, J., Radl, S. 2014 Regimes of liquid transport through sheared beds of inertial smooth particles Powder Technology 264 377395,CrossRefGoogle Scholar
Mondillo, N., Di, M., Kalaitzidis, S., Boni, M., Santoro, L., Balassone, G. 2022 Petrographic and geochemical features of the B3 bauxite horizon (Cenomanian-Turonian) in the Parnassos-Ghiona area : A contribution towards the genesis of the Greek karst bauxites Ore Geology Reviews 143CrossRefGoogle Scholar
Mondillo, N., Herrington, R., & Boni, M. (2021) Bauxites. Encyclopedia of Geology, 694707CrossRefGoogle Scholar
Muriel, B.H., Bressan, S., Allard, T., Morin, G., Roig, J-Y, Couëffé, R., Aertgeerts, G., Derycke, A., Ansart, C., Pinna-Jamme, R., Gautheron, C. 2022 Reading the climate signals hidden in bauxite Geochimica et Cosmochimica Acta 323 4073, 2022GeCoA.323...40HGoogle Scholar
Nguyen, V.D., Ngo, S.H., Nguyen, V.L., & Huynh, T.P. (2023) Incorporation of high loss-on-ignition fly ash into high-strength mortar: Influence on short-term engineering properties. Materials Today: Proceedings, In Press, 15.Google Scholar
Ostap, S. 1986 Control of silica in the Bayer Process used for alumina production Canadian Metallurgical Quarterly 25 101106, 1986CaMQ...25..101O,CrossRefGoogle Scholar
Pang, D., Yu, W., Chen, Q., Du, Y., Dai, X., Deng, K., Wu, B., Deng, X., & Zhou, J. (2023) Continental weathering led to the accumulation of Early Carboniferous bauxite deposits in the SW South China Craton. Journal of Asian Earth Sciences, In Press, 16CrossRefGoogle Scholar
Power, G., Loh, J. 2010 Organic compounds in the processing of lateritic bauxites to alumina: Part 1: Origins and chemistry of organics in the Bayer process Hydrometallurgy 105 129,CrossRefGoogle Scholar
Power, G., Loh, JSC, Vernon, C. 2012 Organic compounds in the processing of lateritic bauxites to alumina Part 2: Effects of organics in the Bayer process Hydrometallurgy 127–128 125149CrossRefGoogle Scholar
Ruys, A. (2019a) Bauxite: The principal aluminum ore. Pp. 3947 in: Alumina Ceramics. ElsevierCrossRefGoogle Scholar
Ruys, A. (2019b) Refining of alumina: The Bayer process. Pp. 4970 in: Alumina Ceramics. ElsevierCrossRefGoogle Scholar
Santini, T.C. 2015 Application of the Rietveld refinement method for quantification of mineral concentrations in bauxite residues (alumina refining tailings) International Journal of Mineral Processing 139 110,CrossRefGoogle Scholar
Smith, P., Power, G. 2021 High Purity Alumina-Current and Future Production Mineral Processing and Extractive Metallurgy Review 13 747756Google Scholar
Tabereaux, A.T. & Peterson, R.D. (2014) Aluminum Production. P. in: Treatise on Process Metallurgy, Volume 3: Industrial Processes. 839917CrossRefGoogle Scholar
Valeev, D., Pankratov, D., Shoppert, A., Sokolov, A., Kasikov, A., Mikhailova, A., Salazar-concha, C., Rodionov, I. 2021 Mechanism and kinetics of iron extraction from high silica boehmite − kaolinite bauxite by hydrochloric acid leaching Transactions of Nonferrous Metals Society of China 31 31283149,CrossRefGoogle Scholar
Wang, C., Lucas, R., Milward, M., Cooper, P.R. 2021 Particle Size Effects on Abrasion, Surface Polishing and Stain Removal Efficacy in a Tooth Model System Biotribology 28CrossRefGoogle Scholar
Wu, S.Z., Chau, K.T., Yu, T.X. 2004 Crushing and fragmentation of brittle spheres under double impact test Powder Technology 143–144 4155CrossRefGoogle Scholar
Wu, Y.S., Zhang, D., Li, M.C., Bi, S.W., Yang, Y.H. 2010 Periodical attenuation of Al(OH)3 particles from seed precipitation in seeded sodium aluminate solution Transactions of Nonferrous Metals Society of China 20 528532,CrossRefGoogle Scholar
Wu, Y., Zhou, K., Zhang, X., Peng, C., Jiang, Y., Chen, W. 2022 Aluminum separation by sulfuric acid leaching-solvent extraction from Al-bearing LiFePO4/ C powder for recycling of Fe/P Waste Management 144 303312,, 35427902CrossRefGoogle ScholarPubMed
Wu, Z., Lv, H., Xie, M., Li, L., Zhao, H., Liu, F. 2022 Reaction behavior of quartz in gibbsite-boehmite bauxite in Bayer digestion and its effect on caustic consumption and alumina recovery Ceramics International 48 1867618686,CrossRefGoogle Scholar
Xue, S.G., Wu, Y.J., Li, Y.W., Kong, X.F., Zhu, F., William, H., Li, X.F., Ye, Y.Z. 2019 Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review. Central South University of Technology Journal of Central South University 26 268288,CrossRefGoogle Scholar
Yadav, S.K., Banerjee, A., Jhariya, M.K., Meena, R.S., Khan, N., & Raj, A. (2022) Eco-restoration of bauxite mining: An ecological approach. P. in: Natural Resources Conservation and Advances for Sustainability. 173193 ppCrossRefGoogle Scholar
Zhang, J., Bai, Y., Dong, H., Wu, Q., Ye, X. 2014 Influence of ball size distribution on grinding effect in horizontal planetary ball mill Advanced Powder Technology 25 983990CrossRefGoogle Scholar
Zhang, X., Huestis, P.L., Pearce, C.I., Hu, J.Z., Page, K., Anovitz, L.M., Aleksandrov, A.B., Prange, M.P., Kerisit, S., Bowden, M.E., Cui, W., Wang, Z., Jaegers, N.R., Graham, T.R., Dembowski, M., Wang, H., Liu, J., Diaye, ATN, Bleuel, M., Mildner, DFR, Orlando, T.M., Kimmel, G.A., Verne, JAL, Clark, S.B., Rosso, K.M. 2018 Boehmite and Gibbsite Nanoplates for the Synthesis of Advanced Alumina Products ACS Applied Nano Materials 1 71157128,CrossRefGoogle Scholar
Zhang, X., Cui, W., Hu, J.Z., Wang, H., Prange, M.P., Wan, C., Jaegers, N.R., Zong, M., Zhang, H., Pearce, C.I., Li, P., Wang, Z., Clark, S.B., Rosso, K.M. 2019 Transformation of Gibbsite to Boehmite in Caustic Aqueous Solution at Hydrothermal Conditions Crystal Growth Design 19 55575567,CrossRefGoogle Scholar
Zhang, J., Wang, Q., Liu, X., Zhou, G., Xu, H., Zhu, Y. 2022 Provenance and ore-forming process of Permian lithium-rich bauxite in central Yunnan SW China. Ore Geology Reviews 145Google Scholar
Zhou, J., Ma, S., Chen, Y., Ning, S., Wei, Y., Fujita, T. 2021 Recovery of scandium from red mud by leaching with titanium white waste acid and solvent extraction with P204 Hydrometallurgy 204,CrossRefGoogle Scholar
Zhou, G., Wang, Y., Qi, T., Zhou, Q., Liu, G., Peng, Z., Li, X. 2023 Chemical Engineering Toward sustainable green alumina production : A critical review on process discharge reduction from gibbsitic bauxite and large-scale applications of red mud Journal of Environmental Chemical Engineering 11,Google Scholar
Zhu, X., Niu, Z., Li, W., Zhao, H., Tang, Q. 2020 A novel process for recovery of aluminum, iron, vanadium, scandium, titanium and silicon from red mud Journal of Environmental Chemical Engineering 8,CrossRefGoogle Scholar
Supplementary material: File

da Rocha Pereira et al. supplementary material

da Rocha Pereira et al. supplementary material
Download da Rocha Pereira et al. supplementary material(File)
File 106.2 KB