Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T19:53:14.636Z Has data issue: false hasContentIssue false

Characterization of Silanol Groups in Protonated Magadiite by 1H and 2H Solid-State Nuclear Magnetic Resonance

Published online by Cambridge University Press:  28 February 2024

Yoshihiko Komori
Affiliation:
Department of Applied Chemistry, School of Science and Engineering, Waseda University, Ohkubo-3, Shinjuku-ku, Tokyo 169-8555, Japan Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, Nishiwaseda-2, Shinjuku-ku, Tokyo 169-0051, Japan
Masaki Miyoshi
Affiliation:
Department of Applied Chemistry, School of Science and Engineering, Waseda University, Ohkubo-3, Shinjuku-ku, Tokyo 169-8555, Japan
Shigenobu Hayashi
Affiliation:
National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
Yoshiyuki Sugahara
Affiliation:
Department of Applied Chemistry, School of Science and Engineering, Waseda University, Ohkubo-3, Shinjuku-ku, Tokyo 169-8555, Japan
Kazuyuki Kuroda*
Affiliation:
Department of Applied Chemistry, School of Science and Engineering, Waseda University, Ohkubo-3, Shinjuku-ku, Tokyo 169-8555, Japan Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, Nishiwaseda-2, Shinjuku-ku, Tokyo 169-0051, Japan
*
E-mail of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Silanol groups in protonated magadiite (H-magadiite) were characterized by 1H and 2H solid-state nuclear magnetic resonance (NMR). H-magadiite and deuterated (D) magadiite were synthesized by the treatment of Na-rich magadiite with 0.2 N HC1 and 0.2 N DC1, respectively. In the 1H NMR spectrum measured at room temperature, silanol groups of H-magadiite showed two signals at 3.75 and 5.70 ppm, indicating that two types of silanol groups were present. The ratio of silanol groups associated with strong hydrogen bonding (5.70 ppm) to those with weaker hydrogen bonding (3.75 ppm) was 2 to 1. The 2H NMR spectra of deuterated magadiite were measured in the temperature range from 150 to 440 K. In the spectra measured at temperatures below 294 K, silanol groups showed Pake doublet patterns. These patterns were composed of two components corresponding to the two types of silanol groups shown in the 1H NMR analysis. Both silanol groups produced wobbling motions with increasing temperature. Above 294 K, the profile of the Pake doublet pattern was transformed gradually to a near triangular pattern, indicating that the silanol groups underwent other motions also, such as a two-site jump.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Almond, G.G. Harris, R.K. and Graham, P., (1994) A study of the layered alkali metal silicate, magadiite, by one- and two-dimensional 1H and 29Si NMR spectroscopy Journal of the Chemical Society, Chemical Communications 851852.CrossRefGoogle Scholar
Almond, G.G. Harris, R.K. Franklin, K.R. and Graham, P., (1996) A 23Na NMR study of hydrous layered silicates Journal of Materials Chemistry 6 843847 10.1039/jm9960600843.CrossRefGoogle Scholar
Almond, G.G. Harris, R.K. and Franklin, K.R., (1997) A structural consideration of kanemite, octosilicate, magadiite and kenyaite Journal of Materials Chemistry 7 681687 10.1039/a606856a.CrossRefGoogle Scholar
Barnes, R.G. and Smith, J.A.S., (1974) Deuteron quadrupole coupling tensors in solids Advances in Nuclear Quadrupole Resonances, Volume 1 London Heyden 335355.Google Scholar
Brandt, A. Schwieger, W. and Bergk, K.H., (1987) A new model structure of sheet sodium (Na) silicate hydrates (Na-SH)-theoretical view based on known X-ray and NMR-measurements Revue de Chimie Minérale 24 564571.Google Scholar
Brandt, A. Schwieger, W. and Bergk, K.H., (1988) Development of a model structure for the sheet silicate hydrates ilerite, magadiite, and kenyaite Crystal Research and Technology 23 12011203 10.1002/crat.2170230927.CrossRefGoogle Scholar
Brindley, G.W., (1969) Unit cell of magadiite in air, in vacuo, and under other conditions American Mineralogist 54 15831591.Google Scholar
Butler, L.G. and Brown, T.L., (1981) Nuclear quadrupole coupling constants and hydrogen bonding. A molecular orbital study of oxygen-17 and deuterium field gradients in formaldehyde-water hydrogen bonding Journal of the American Chemical Society 103 65416549 10.1021/ja00412a001.CrossRefGoogle Scholar
Dailey, J.S. and Pinnavaia, T.J., (1992) Silica-pillared derivatives of H+-magadiite, a crystalline hydrated silica Chemistry of Materials 4 855863 10.1021/cm00022a022.CrossRefGoogle Scholar
Eckert, H. Yesinowski, J.E. and Stolper, E.M., (1989) Quantitative NMR studies of water in silicate glasses Solid State Ionics 32/33 298313 10.1016/0167-2738(89)90235-X.CrossRefGoogle Scholar
Garcés, J.M. Rocke, S.C. Crowder, C.E. and Hasha, D.L., (1988) Hypothetical structures of magadiite and sodium octosilicate and structural relationships between the layered alkali metal silicates and the mordenite- and pentasil-group zeolites Clays and Clay Minerals 36 409418 10.1346/CCMN.1988.0360505.CrossRefGoogle Scholar
Gluszak, T.J. Chen, D.T. Sharma, S.B. Dumesic, J.A. and Root, T.W., (1992) Observation of Brpnsted acid sites of DY zeolite with deuterium NMR Chemical Physics Letters 190 3641 10.1016/0009-2614(92)86098-3.CrossRefGoogle Scholar
Hadjar, H. Balard, H. and Papirer, E., (1995) Comparison of crystalline (H-magadiite) and amorphous silicas using inverse gas chromatography at finite concentration conditions Colloids and Surfaces A 103 111117 10.1016/0927-7757(95)03214-X.CrossRefGoogle Scholar
Hayashi, S., (1994) Effects of magic-angle spinning on spinlattice relaxations in talc Solid State Nuclear Magnetic Resonance 3 323330 10.1016/0926-2040(94)90016-7.CrossRefGoogle ScholarPubMed
Hayashi, S. Ueda, X. Hayamizu, K. and Akiba, E., (1992) NMR study of kaolinite. 1. 29Si, 27Al, and 1H spectra Journal of Physical Chemistry 96 1092210928 10.1021/j100205a058.CrossRefGoogle Scholar
Hayashi, S. Akiba, E. Miyawaki, R. and Tomura, S., (1994) 2H NMR study of hydrogen bonding in deuterated kaolinite Clays and Clay Minerals 42 561566 10.1346/CCMN.1994.0420507.CrossRefGoogle Scholar
Hoatson, G.L. Void, R.L., Diehl, P. Fluck, E. Günther, H. Kosfeld, R. and Seelig, J., (1994) 2H-NMR spectroscopy of solids and liquid crystals NMR Basic Principles and Progress: Solid State NMR III: Organic Matter, Volume 32 Berlin Spriger-Verlag 167.Google Scholar
Huang, Y. Jiang, Z. and Schwieger, W., (1999) Vibrational spectroscopic studies of layered silicates Chemistry of Materials 11 12101217 10.1021/cm980403m.CrossRefGoogle Scholar
Kobe, J.M. Gluszak, T.J. Dumestic, J.A. and Root, T.W., (1995) Deuterium NMR characterization of Brpnsted acid sites and silanol species in zeolites Journal of Physical Chemistry 99 54855491 10.1021/j100015a035.CrossRefGoogle Scholar
Kosuge, K. Yamazaki, A. Tsunashima, A. and Otsuka, R., (1992) Hydrothermal synthesis of magadiite and kenyaite Journal of the Ceramic Society of Japan 100 326331 10.2109/jcersj.100.326.CrossRefGoogle Scholar
Lagaly, G. Beneke, K. and Weiss, A., (1975) Magadiite and H-magadiite: I. Sodium magadiite and some of its derivatives American Mineralogist 60 642649.Google Scholar
Lagaly, G. Beneke, K. and Weiss, A., (1975) Magadiite and H-magadiite: II. H-magadiite and its intercalation compounds American Mineralogist 60 650658.Google Scholar
Landis, M.E. Aufdembrink, B.A. Chu, P. Johnson, I.D. Kirker, G.W. and Rubin, M.K., (1991) Preparation of molecular sieves from dense, layered metal oxides Journal of the American Chemical Society 113 31893190 10.1021/ja00008a067.CrossRefGoogle Scholar
Mercier, L. Facey, G.A. and Detellier, C., (1994) Organo- layered silicates. Interlamellar intercalation and grafting of ethylene glycol in magadiite Journal of the Chemical Society, Chemical Communications 21112112.CrossRefGoogle Scholar
Ogawa, M. Miyoshi, M. and Kuroda, K., (1998) Perfluoroalkylsilylation of the interlayer silanol groups of a layered silicate, magadiite Chemistry of Materials 10 37873789 10.1021/cm980660r.CrossRefGoogle Scholar
Ogawa, M. Okutomo, S. and Kuroda, K., (1998) Control of interlayer microstructures of a layered silicate by surface modification with organochlorosilanes Journal of the American Chemical Society 120 73617362 10.1021/ja981055s.CrossRefGoogle Scholar
Okutomo, S. Kuroda, K. and Ogawa, M., (1999) Preparation and characterization of silylated-magadiite Applied Clay Science 15 253264 10.1016/S0169-1317(99)00010-1.CrossRefGoogle Scholar
Pfeifer, H., Diehl, P. Fluck, E. Günther, H. Kosfeld, R. and Seelig, J., (1994) NMR of Solid Surfaces NMR Basic Principles and Progress: Solid State NMR II: Inorganic Matter, Volume 31 Berlin Spriger-Verlag 3190.Google Scholar
Pinnavaia, T.J. Johnson, I.D. and Lipsicas, M., (1986) A 29Si MAS NMR study of tetrahedral site distributions in the layered silicic acid H+-magadiite (H2Si14O29·nH2O) and in Na+-magadiite (Na2Si14O29·nH2O) Journal of Solid State Chemistry 63 118121 10.1016/0022-4596(86)90159-3.CrossRefGoogle Scholar
Rojo, J.M. Ruiz-Hitzky, E. Sanz, J. and Serratosa, J.M., (1983) Characterization of surface Si-OH groups in layer silicic acids by IR and NMR spectroscopies Revue de Chimie Minérale 20 807816.Google Scholar
Rojo, J.M. Ruiz-Hitzky, E. and Sanz, J., (1988) Proton-sodium exchange in magadiite. Spectroscopic study (NMR, IR) of the evolution of interlayer OH groups Inorganic Chemistry 27 27852790 10.1021/ic00289a009.CrossRefGoogle Scholar
Ruiz-Hitzky, E. and Rojo, J.M., (1980) Intracrystalline grafting on layer silicic acids Nature 287 2830 10.1038/287028a0.CrossRefGoogle Scholar
Ruiz-Hitzky, E. Rojo, J.M. and Lagaly, G., (1985) Mechanism of the grafting of organosilanes on mineral surfaces III. Interlamellar grafting of layer silicic acids Colloid and Polymer Science 263 10251030 10.1007/BF01410996.CrossRefGoogle Scholar
Satozawa, M. Kunimori, K. and Hayashi, S., (1997) 13C and 1H MAS NMR study of benzene and p-xylene in zeolites and a mesoporous material FSM-16 Bulletin of the Chemical Society of Japan 70 97105 10.1246/bcsj.70.97.CrossRefGoogle Scholar
Scholzen, G. Beneke, K. and Lagaly, G., (1991) Diversity of magadiite Zeitschrift für Anorganische und Allgemeine Chemie 597 183196 10.1002/zaac.19915970121.CrossRefGoogle Scholar
Schwieger, W. Heidemann, D. and Bergk, K., (1985) Highresolution solid-state silicon-29 nuclear magnetic resonance spectroscopic studies of synthetic sodium silicate hydrates Revue de Chimie Minérale 22 639650.Google Scholar
Sprung, R. Davis, M.E. Kauffman, J.S. and Dybowski, C., (1990) Pillaring of magadiite with silicate species Industrial & Engineering Chemistry Research 29 213220 10.1021/ie00098a011.CrossRefGoogle Scholar
Wong, She Tin and Cheng, Soofin, (1993) Preparation and characterization of pillared magadiite Chemistry of Materials 5 6 770777 10.1021/cm00030a010.CrossRefGoogle Scholar
Xie, X. and Hayashi, S., (1999) NMR study of kaolinite intercalation compounds with formamide and its derivatives. 1. Structure and orientation of guest molecules Journal of Physical Chemistry B 103 59495955 10.1021/jp990237l.CrossRefGoogle Scholar
Xie, X. and Hayashi, S., (1999) NMR study of kaolinite intercalation compounds with formamide and its derivatives. 2. Dynamics of guest molecules Journal of Physical Chemistry B 103 59565962 10.1021/jp990238d.CrossRefGoogle Scholar
Yanagisawa, T. Kuroda, K. and Kato, C., (1988) Organic derivatives of layered polysilicates I. Xrimethylsilylation of magadiite and kenyaite Reactivity of Solids 5 167175 10.1016/0168-7336(88)80085-8.CrossRefGoogle Scholar
Yanagisawa, T. Kuroda, K. and Kato, C., (1988) Organic derivatives of layered polysilicates II. Reaction of magadiite and kenyaite with diphenylmethylchlorosilane Bulletin of the Chemical Society of Japan 61 37433745 10.1246/bcsj.61.3743.CrossRefGoogle Scholar
Yanagisawa, T. Harayama, M. Kuroda, K. and Kato, C., (1990) Organic derivatives of layered polysilicates III. Reaction of magadiite and kenyaite with alkyldimethylchlo- rosilane Solid State Ionics 42 1519 10.1016/0167-2738(90)90253-N.CrossRefGoogle Scholar
Yanagisawa, T. Kuroda, K. Doi, A. and Kato, C., (1991) Heat-treatment of trimethylsilylated layered polysilicates and the variation in their specific surface areas Clay Science 8 107116.Google Scholar
Yesinowski, J.P. and Eckert, H., (1987) Hydrogen environments in calcium phosphates: 1H MAS NMR at high spinning speeds Journal of the American Chemical Society 109 62746282 10.1021/ja00255a009.CrossRefGoogle Scholar