Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-10-02T14:54:53.516Z Has data issue: false hasContentIssue false

Characterization of Overgrowth Structures Formed Around Individual Clay Particles During Early Diagenesis

Published online by Cambridge University Press:  02 April 2024

Michel Steinberg
Affiliation:
Laboratoire de Géochimie, U.A. 723, Bat. 504, Université de Paris Sud, 91405 Orsay Cédex, France
Thierry Holtzapffel
Affiliation:
Departement de Géologie, Université d'Angers, 49000 Angers, France
Michel Rautureau
Affiliation:
Laboratoire de Cristallographie, U.A. 810, Université d'Orléans, 455046 Cédex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The coarse (0.4–2 µm) clay fraction of an Albian black shale collected in the Atlantic Ocean (Deep Sea Drilling Project leg 11) consists chiefly (90–95%) of smectite and 5–10% illite. Both minerals are locally surrounded by overgrowth structures, such as fine laths about 0.05–0.4 µm long and 0.02–0.1 µm wide. Individual laths or assemblages of laths protrude from the center of smectite flakes at angles of about 60° to each other. Laths occur around illite crystals in a similar manner or coalesce into a rim that consists of 0.05–0.1-µm-size particles. On the basis of scanning transmission electron microscopy: (1) the center of individual illite crystals consists of a dioctahedral mineral, but the overgrowth structures are Al-Fe beidellites; and (2) the smectite flakes have highly variable compositions, but correspond chiefly to Fe-Al-beidellite, whereas the overgrowths are compositionally close to montmorillonite.

The overgrowth structures seem to have formed during early diagenesis. The chemical composition of overgrowths around illite and smectite tend to be similar in response to the new environment, implying an addition of silica to both materials.

Résumé

Résumé

La fraction argileuse (0,4-2 μm) d'un échantillon de black shale albien de l'Atlantique (Deep Sea Drilling Project leg 11) surtout formée de smectite (90–95%) et d'illite (5–10%) a été étudiée. L’étude morphologique des particules en microscopie électronique montre qu'elles sont souvent entourées de surcroissances généralement formées de lattes très fines longues de 0,05 à 0,4 Mm et larges de 0,02 à 0,1 μm. Autour des flocons de smectite, les lattes peuvent être isolées ou former des assemblages de 4 ou 5 lattes formant fréquemment des angles de 60° entre eux. Des faciès identiques se rencontrent autour des illites mais ces minéraux peuvent aussi être entourés de lattes courtes (0,05 à 0,1 μm) et coalescentes formant une auréole plus ou moins continue autour du cristal.

L'analyse de ces argiles par microscopie électronique analytique montre: (1) que la composition du centre des particules d'illite correspond à des minéraux dioctaédriques mais les lattes qui les entourent sont des beidellites Al-Fe; (2) que la composition du centre des smectites, beaucoup plus variable d'une particule à l'autre, correspond à des beidellites Fe-Al et les lattes qui les entourent à des montmorillonites.

Ces sur-croissances semblent se former au cours de la diagenèse précoce. Le fait que la composition des lattes poussant autour des illites converge vers celle des lattes entourant les smectites constitue une indication de la réponse des minéraux à un changement de milieu. Du point de vue chimique, ces modifications nécessitent toute deux un apport de silice.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

References

Banos, J. O. and Amouric, M., 1984 Biotite chloritization by interlayer brucitization as seen by HRTEM Amer. Mineral. 69 869871.Google Scholar
Banos, J. O., Amouric, M., De Fouquet, C. and Baronnet, A., 1983 Interlayering and interlayer slip in biotite as seen by HRTEM Amer. Mineral. 68 754768.Google Scholar
Buseck, P. R. and Cowley, J. M., 1983 Modulated and intergrowth structures in minerals and electron microscope methods for their study Amer. Mineral. 68 1840.Google Scholar
Chamley, H. and Bonnot-Courtois, C., 1981 Argiles authigènes et terrigènes de l’Atlantique et du Pacifique Nord-Ouest (Legs 11 et 58 du DSDP). Apport des terres rares Oceanolog. Acta 4 229238.Google Scholar
Clauer, N., Giblin, P. and Lucas, J., 1984 Sr and Ar isotope studies of detrital smectites from the Atlantic Ocean (DSDP Leg 43, 48, and 50) Isotope Geosci. 2 141151.Google Scholar
Cliff, G. and Lorimer, G. W., 1975 The quantitative analysis of thin specimens Microscopy 103 203207.CrossRefGoogle Scholar
Colliex, C., Treacy, M. M. J., Jouffrey, B., Bourret, A. and Colliex, C., 1983 Le microscope électronique à balayage en transmission ou STEM Microscopie Électronique en Sciences des Matériaux Paris Edition du Centre National de la Recherche Scientifique 391424.Google Scholar
Dunoyer de Segonzac, G., 1970 The transformation of clay minerals during diagenesis and low-grade metamorphism, a review Sedimentology 15 281346.CrossRefGoogle Scholar
Duplay, J., 1982 Populations de monoparticules d’argiles. Analyse chimique par microsonde électronique France Université de Poitiers, Poitiers.Google Scholar
Fritz, B., Kam, M. and Tardy, Y., 1985 A theoretical approach to inhomogeneous equilibrium between populations of clay mineral particles and aqueous solutions Int. Clay Conf., Denver, 1985 234.Google Scholar
Haskin, L. A., Haskin, M. A., Frey, F. A., Wildeman, T. R. and Ahrens, L. H., 1968 Relative and absolute terrestrial abundance of the rare earths Origin and Distribution of the Elements New York Pergamon Press 889912.CrossRefGoogle Scholar
Hoffert, M., 1980 Les argiles rouges des grands fonds dans le Pacifique Centre-Est. Authigenèse, transport, diagenèse Mém. Sci. Géol. .Google Scholar
Hollister, C. D., Ewing, J. L., Habib, B., Hathaway, J. C., Lancelot, Y., Luterbacher, H., Paulus, F. J., Wilie-Poag, C., Wilconson, J.A. Worstell, P., Hollister, C. D. and Ewing, J. L., 1972 Site 106 Lower Continental Rise Hills Initial Report of DSDP Leg 11 Washington, D.C. U.S. Gov. Print. Office 219312.Google Scholar
Holtzapffel, T., 1983 Origine et évolution des smectites albo-aptiennes et paléogènes du domaine Nord-Atlantique France Université de Lille, Lille.Google Scholar
Holtzapffel, T., Bonnot-Courtois, C., Chamley, H. and Clauer, N., 1985 Héritage et diagenèse des smectites du domaine sédimentaire nord-atlantique (Crétacé, Paléogène) Bull. Soc. Géol. France 8 2533.CrossRefGoogle Scholar
Holtzapffel, T. and Chamley, H., 1983 Morphologie et genèse de smectites albo-aptiennes et paléogènes de l’Atlantique Nord: Héritage et recristallisations C.R. Acad. Sci., Paris, Sér. II 311 15991602.Google Scholar
Hower, J., Eslinger, E. V., Hower, M. E. and Perry, E. A., 1976 Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence Bull. Geol. Soc. Amer. 87 725737.2.0.CO;2>CrossRefGoogle Scholar
Mackenzie, F. T. and Garrels, R. M., 1965 Silicates, reactivity with seawater Science 150 5758.CrossRefGoogle Scholar
McCarthy, J. J. and Schamber, F. H., 1979 Least-square fit with digital filter: A status report Nat. Bur. Stand. Special Publ. 604 273296.Google Scholar
Manceau, A. and Calas, G., 1985 Heterogeneous distribution of nickel in hydrous silicates from New Caledonia ore deposits Amer. Mineral. 70 549558.Google Scholar
Maynard, J.B., 1975 Kinetics of silica sorption by kaolinite with application to seawater chemistry Amer. J. Sci. 275 10281048.CrossRefGoogle Scholar
Paquet, H., Duplay, J., Nahon, D., Olphen, H. v. and Veniale, F., 1982 Variations in the composition of phyllosilicate monoparticles in a weathering profile of ultrabasic rocks Proc. Int. Clay Conf, Bologna, Pavia, 1981 Amsterdam Elsevier 595603.Google Scholar
Piper, D. Z., 1974 Rare earth elements in the sedimentary cycle: A summary Chem. Geol. 14 285304.CrossRefGoogle Scholar
Rautureau, M. and Steinberg, M., 1985 Détermination de la composition et de l’homogénéité des phyllosilicates par microscopie électronique analytique à balayage (S.T.E.M.) J. Microsc. Spectrosc. Electron. 10 181192.Google Scholar
Robert, C., Stein, R. and Acquaviva, M., 1986 Cenozoic evolution and significance of clay associations in the New Zealand region of the South Pacific, Deep Sea Drilling Project, leg 90 Init. Repts. DSDP 90 12251238.Google Scholar
Siever, R., 1968 Establishment of equilibrium between clays and seawater Earth Planet. Sci. Lett. 5 106110.CrossRefGoogle Scholar
Siever, R. and Woodford, N., 1973 Sorption of silica by clay minerals Geochim. Cosmochim. Acta 37 18511880.CrossRefGoogle Scholar
Siffert, B., 1962 Quelques réactions de la silice en solution: La formation des argiles Mém. Serv. Géol. Als. Lorr. 21 186.Google Scholar
Steinberg, M., Holtzapffel, T., Rautureau, M., Clauer, N., Bonnot-Courtois, C., Manoubi, T. and Badaut, D., 1984 Croissance cristalline et homogénéisation chimique de monoparticules argileuses au cours de la diagenèse C.R. Acad. Sci., Paris 299 441444.Google Scholar
Tardy, Y., Duplay, J., Fritz, B., Olphen, H. v. and Veniale, F., 1982 Chemical composition of individual clay particles: An ideal solid solution model Proc. Int. Clay Conf., Bologna, Pavia, 1981 Amsterdam Elsevier 441450.Google Scholar
Trauth, N. (1977) Argiles évaporitiques dans la sédimentation carbonatée continentale et épicontinentale tertiaire: Mém. Sci. Géol. Strasbourg 49, 198 pp.Google Scholar
Trebbia, P. (1984) Soft Hamlet pour l’analyse quantitative (EELS et EDX). Centre National de la Recherche Scientifique, Paris, Licence 5134, 23 pp.Google Scholar
Veblen, D. R. and Ferry, J. M., 1983 A TEM study of the biotite-chlorite reaction and comparison with petrologic observations Amer. Mineral. 68 11601168.Google Scholar
Weaver, C. E. and Beck, K. C. (1971) Clay water diagenesis during burial: How mud becomes gneiss: Geol. Soc. Amer. Spec. Pap. 134, 96 pp.Google Scholar