Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T18:51:09.908Z Has data issue: false hasContentIssue false

Characterization of Expandable Clay Minerals in Lake Baikal Sediments by Thermal Dehydration and Cation Exchange

Published online by Cambridge University Press:  01 January 2024

Tomas Grygar*
Affiliation:
Institute of Inorganic Chemistry AS CR, Rez, Czech Republic
Petr Bezdicka
Affiliation:
Institute of Inorganic Chemistry AS CR, Rez, Czech Republic
David Hradil
Affiliation:
Institute of Inorganic Chemistry AS CR, Rez, Czech Republic
Michaela Hruskova
Affiliation:
Institute of Inorganic Chemistry AS CR, Rez, Czech Republic
Katerina Novotna
Affiliation:
Institute of Inorganic Chemistry AS CR, Rez, Czech Republic
Jaroslav Kadlec
Affiliation:
Paleomagnetic Laboratory, Geological Institute AS CR, Prague, Czech Republic
Petr Pruner
Affiliation:
Paleomagnetic Laboratory, Geological Institute AS CR, Prague, Czech Republic
Hedi Oberhansli
Affiliation:
GeoForschungsZentrum, Potsdam, Germany
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The sedimentary series from Academician Ridge, Lake Baikal, eastern Siberia, was examined using cation exchange capacity (CEC) to estimate the amount of expandable clay minerals (ECM) and high-temperature X-ray diffraction (HT-XRD) to determine their basic classification. The comparison of the magnetic susceptibility (MS) at sub-millennial resolution and the δl8O record of a reference Atlantic core (ODP 980) was used to create an age model. The most closely studied part of the series covered the major part of the last glacial cycle (120–20 ky BP). The HT-XRD analysis is based on monitoring the course of ECM dehydration with 5°C steps between 25 and 250°C and enabled us to improve the discrimination between ECM, chlorite and micas. The CEC obtained at millennial resolution showed that the neoformation of ECM in warmer periods of the last interglacial was either insignificant or fully compensated by their dissolution or dilution. The CEC record was correlated with the main climatic stages in the period studied. Both MS and CEC records reflected the environmental changes at about millennial resolution, including climatic instabilities between 117 and 73 ky BP (late MIS5).

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2005

References

Antipin, V. Afonina, T. Badalov, O. Bezrukova, E. Bukharov, A. Bychinsky, V D AA Dorofeeva, R. Duchkov, A. Esipko, O. Fileva, T. Gelety, V. Golubev, V. Goreglyad, A. Gorokhov, I. Gvozdkov, A. Hase, Y. Ioshida, N. Ivanov, E. Kalashnikova, I. Kalmychkov, G. Karahanov, E. Kashik, S. Kawai, T. Kerher, E. Khakhaev, B. Khlystov, O. Khursevich, G. Khuzin, M. King, J. Konstantinov, K. Kochukov, V. Krainov, M. Kravchinsky, V. Kudryashov, N. Kukhar, L. Kuzmin, M. Nakamura, K. Nomura, S. Oksenoid, E. Peck, J. Pevzner, L. Prokopenko, A. Romashov, V. Sakai, H. Sandimirov, I. Sapozhnikov, A. Seminsky, K. Soshina, N. Tanaka, A. Tkachenko, L. Ushakovskaya, M. and Williams, D., (2001) The new BDP-98 600-m drill core from Lake Baikal: a key late Cenozoic sedimentary section in continental Asia Quaternary International 80 1936 10.1016/S1040-6182(01)00016-7.CrossRefGoogle Scholar
Back, S. De Batist, M. Strecker, M.R. and Vanhauwaert, P., (1999) Quaternary depositional systems in Northern Lake Baikal, Siberia Journal of Geology 107 112 10.1086/314328.CrossRefGoogle Scholar
Bérend, I. Cases, J.M. Bérend, I. François, M. Uriot, J.P. Michot, L. Maison, A. and Thomas, F., (1995) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite: 3. Li+, Na+, Rb+, and Cs+ exchanged forms Clays and Clay Minerals 43 324336 10.1346/CCMN.1995.0430307.CrossRefGoogle Scholar
Bray, H. Redfem, S.A.T. and Clark, S.M., (1998) The kinetics of dehydration in Ca-montmorillonite: an in situ X-ray diffraction study Mineralogical Magazine 62 647656 10.1180/002646198548034.CrossRefGoogle Scholar
Cases, J.M. Bérend, I. François, M. Uriot, J.P. Michot, L.J. and Thomas, F., (1997) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite: 3. Mg2+, Ca2+, Sr2+, and Ba2+ exchanged forms Clays and Clay Minerals 45 822 10.1346/CCMN.1997.0450102.CrossRefGoogle Scholar
Chlachula, J., (2001) Pleistocene climate change, natural environment and Paleolithic occupation of the Angara-Baikal area, east Central Siberia Quaternary International 80 69–62 10.1016/S1040-6182(01)00020-9.Google Scholar
Collins, D.R. Fitch, A.N. and Catlow, C.R.A., (1992) Dehydration of vermiculites and montmorillonites: A time resolved powder neutron diffraction study Journal of Materials Chemistry 2 865873 10.1039/jm9920200865.CrossRefGoogle Scholar
Demory, F. Oberhansli, H. Nowaczyk, N.R. Gottschalk, M. Wirth, R. and Neumann, R., (2005) Detrital input and early diagenesis in sediments from Lake Baikal revealed by rock magnetism Global and Planetary Change 46 145166 10.1016/j.gloplacha.2004.11.010.CrossRefGoogle Scholar
Edlund, M.B. and Stoermer, E.F., (2000) A 200,000-year, high-resolution record of diatom productivity and community makeup from Lake Baikal shows high correspondence to the marine oxygen-isotope record of climate change Limnology and Oceanography 45 948962 10.4319/lo.2000.45.4.0948.CrossRefGoogle Scholar
Fagel, N. Boski, T. Likhoshway, L. and Oberhansli, H., (2003) Late Quaternary clay mineral record in Central Siberia Lake Baikal (Academician Ridge, Siberia) Palaeogeography Palaeoclimatology Palaeoecology 193 159179 10.1016/S0031-0182(02)00633-8.CrossRefGoogle Scholar
Grachev, M.A. Vorobyova, S.S. Likhoshway, Y.V. Goldberg, E.L. Zhirova, G.A. Levina, O.V. and Khlystov, O.M., (1998) A high-resolution diatom record of the palaeoclimates of East Siberia for the last 2.5 My from Lake Baikal Quaternary Science Reviews 17 11011106 10.1016/S0277-3791(98)00048-1.CrossRefGoogle Scholar
Graf von Reichenhach, H. and Beyer, J., (1994) Dehydration and rehydration of vermiculites: I. Phlogopitic Mg-vermiculite Clay Minerals 29 327340 10.1180/claymin.1994.029.3.04.CrossRefGoogle Scholar
Horiuchi, K. Minoura, K. Hoshino, K. Oda, T. Nakamura, T. and Kawai, T., (2000) Palaeoenvironmental history of Lake Baikal during the last 23000 years Palaeogeography Palaeoclimatology Palaeoecology 157 95108 10.1016/S0031-0182(99)00156-X.CrossRefGoogle Scholar
Kaufhold, S. Dohrmann, R. Ufer, K. and Meyer, F.M., (2002) Comparison of methods for the quantification of montmorillonite in bentonites Applied Clay Science 22 145151 10.1016/S0169-1317(02)00131-X.CrossRefGoogle Scholar
Kravchinsky, V.A. Krainov, M.A. Evans, M.E. Peck, J.A. King, J.W. Kuzmin, M.I. Sakai, H. Kawai, T. and Williams, D.F., (2003) Magnetic record of Lake Baikal sediments: chronological and paleoclimatic implication for the last 6.7 Myr Palaeogeography Palaeoclimatology Palaeoecology 195 281298 10.1016/S0031-0182(03)00362-6.CrossRefGoogle Scholar
Laureiro, Y. Jerez, A. Rouquérol, F. and Rouquérol, J., (1996) Dehydration kinetics of Wyoming montmorillonite studied by controlled transformation rate thermal analysis Thermochimica Acta 278 165173 10.1016/0040-6031(95)02330-5.CrossRefGoogle Scholar
Marcos, C. Arguelles, A. Ruiz-Conde, A. Sanchez-Soto, P.J. and Blanco, J.A., (2003) Study of dehydration process of vermiculites by applying a vacuum pressure: formation of interstratified phases Mineralogical Magazine 67 12531268 10.1180/0026461036760163.CrossRefGoogle Scholar
McManus, J.F. Oppo, D.W. and Cullen, J.L., (1999) A 0.5-million-year record of millennial-scale climatic variability in the North Atlantic Science 283 971975 10.1126/science.283.5404.971.CrossRefGoogle ScholarPubMed
McManus, J.F. Oppo, D.W. Keigwin, L.D. Cullen, J.L. and Bond, G.C., (2002) Thermohaline circulation and prolonged interglacial warmth in the North Atlantic Quaternary Research 58 1721 10.1006/qres.2002.2367.CrossRefGoogle Scholar
Meier, L.P. and Kahr, G., (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine Clays and Clay Minerals 47 386388 10.1346/CCMN.1999.0470315.CrossRefGoogle Scholar
Moore, D.M. and Hower, J., (1986) Ordered interstratification of dehydrated and hydrated Na-smectite Clays and Clay Minerals 34 379384 10.1346/CCMN.1986.0340404.CrossRefGoogle Scholar
Müller, J. Oherhansli, H. Melles, M. Schwab, M. Rachdol, V. and Huhherten, H.-W., (2001) Late Pliocene sedimentation in Lake Baikal: implications for climate and tectonic change in SE Siberia Palaeogeography Palaeoclimatology Palaeoecology 174 305326 10.1016/S0031-0182(01)00320-0.CrossRefGoogle Scholar
Peck, J.A. King, J.W. Colman, S.M. and Kravchinsky, V.A., (1994) A rock-magnetic record from Lake Baikal, Siberia: Evidence for Late Quaternary climatic change Earth and Planetary Science Letters 122 221238 10.1016/0012-821X(94)90062-0.CrossRefGoogle Scholar
Prokopenko, A.A. Karahanov, E.B. Williams, D.F. Kuzmin, M.I. Shackleton, N.J. Crowhurst, S.J. Peck, J.A. Gvozdkov, A.N. and King, J.W., (2001) Biogenic silica record of Lake Baikal response to climatic forcing during the Brunhes Quaternary Research 55 123132 10.1006/qres.2000.2212.CrossRefGoogle Scholar
Prokopenko, A.A. Karahanov, E.B. Williams, D.F. Kuzmin, M.I. Khursevich, G.K. and Gvozdkov, A.N., (2001) The detailed record of climatic events during the past 75,000 yrs BP from the Lake Baikal drill core BDP-93-2 Quaternary International 80 5968 10.1016/S1040-6182(01)00019-2.CrossRefGoogle Scholar
Ruiz-Conde, A. Ruiz-Amil, A. Perez-Rodriguez, J.L. and Sanchez-Soto, P.J., (1996) Dehydration-rehydration in magnesium vermiculite: conversion from two-one and one-two layer hydration states through the formation of interstratified phases Journal of Materials Chemistry 6 15571566 10.1039/JM9960601557.CrossRefGoogle Scholar
Singer, A., (1979) The paleoclimatic interpretation of clay minerals in soils and weathering profiles Earth Science Reviews 15 303326 10.1016/0012-8252(80)90113-0.CrossRefGoogle Scholar
Solotchina, E.P. Prokopenko, A.A. Vasilevsky, A.N. Gavshin, V.M. Kuzmin, M.I. and Williams, D.F., (2002) Simulation of XRD patterns as an optimal technique for studying glacial and interglacial clay mineral associations in bottom sediments of Lake Baikal Clay Minerals 37 105119 10.1180/0009855023710021.CrossRefGoogle Scholar
Thiry, M., (2000) Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin Earth Science Reviews 49 201221 10.1016/S0012-8252(99)00054-9.CrossRefGoogle Scholar
Weiss, Z. Valvoda, V. and Chmielova, M., (1994) Dehydration and rehydration of natural Mg-vermiculite Geologica Carpathica Series Clays 45 3339.Google Scholar
Yuretich, R. Melles, M. Sarata, B. and Grohe, H., (1999) Clay minerals in the sediments of Lake Baikal: A useful climate proxy Journal of Sedimentary Research 69 588596 10.2110/jsr.69.588.CrossRefGoogle Scholar