Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T22:45:31.461Z Has data issue: false hasContentIssue false

Cation-site partitioning in Ti-rich micas from Black Hill (Australia): A multi-technical approach

Published online by Cambridge University Press:  01 January 2024

Emanuela Schingaro
Affiliation:
Dipartimento Geomineralogico, Universita’ di Bari, via E. Orabona 4, I-70125 Bari, Italy
Fernando Scordari*
Affiliation:
Dipartimento Geomineralogico, Universita’ di Bari, via E. Orabona 4, I-70125 Bari, Italy
Ernesto Mesto
Affiliation:
Dipartimento Geomineralogico, Universita’ di Bari, via E. Orabona 4, I-70125 Bari, Italy
Maria Franca Brigatti
Affiliation:
Dipartimento di Scienze della Terra, Universita’ di Modena e Reggio Emilia, P.zza S. Eufemia 19, I-41100 Modena, Italy
Giuseppe Pedrazzi
Affiliation:
Dipartimento di Sanita’ Pubblica, Sezione di Fisica, Plesso Biotecnologico Integrato via Volturno 39, I-43100 Parma, Italy
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The crystal chemistry of Ti-rich trioctahedral micas of plutonic origin, cropping out at Black Hill (South Australia) has been investigated by combining electron microprobe analysis, single crystal X-ray diffraction, Mössbauer spectroscopy and X-ray photoelectron spectroscopy. Chemical analyses have shown the samples taken to be quite homogeneous and Ti-rich (TiO2 ≈ 7 wt.%). Mössbauer investigation yielded Fe2+/Fe3+ ≈ 30. X-ray photoelectron spectroscopy analysis seems to suggest the occurrence of three Ti species: octahedral Tr4+(60%), octahedral Ti3+(26%), and tetrahedral Ti4+(14%). The analyzed sample belongs to the 1M polytype and the relevant crystal data from structure analysis are: a = 5.347(1) Å, b = 9.261(2) Å, c = 10.195(2) Å, β = 100.29°(1). Anisotropic structure refinement was performed in space group C2/m, and converged at R = 2.62, Rw = 2.80. Structural details (the c cell parameter, the off-center shift of the M2 cation towards 04, the bond-length distortions of the cis-M2 octahedron, the interlayer sheet thickness, the projection of K−O4 distance along c*, the difference <K−O>outer-<K−O>inner) support the occurrence of the Ti-oxy substitution (VIR2+ + 2(OH) ⇌ Ti4+ + 202− + H2) in the sample. Analysis of structural distortions as a function of the Ti content revealed that the positions of the oxygens 03 and 04 are displaced in opposite senses along [100]. This produces an enlargement of the M1 site with respect to the M2 site and a shortening of the interlayer distance. This trend seems to be in common with other Ti-rich 1M micas of plutonic origin.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 2005

References

Bohlen, S.R. Peacor, D.R. and Essene, E.J., (1980) Crystal chemistry of a metamorphic biotite and its significance in water barometry American Mineralogist 65 5562.Google Scholar
Brigatti, M.F. and Davoli, P., (1990) Crystal structure refinement of 1M plutonic biotites American Mineralogist 75 305313.Google Scholar
Brigatti, M.F. Guggenheim, S., Mottana, A. Sassi, F.P. Thompson, J.B. and Guggenheim, S., (2002) Mica crystal chemistry and the influence of pressure, temperature and solid solution on atomistic models Micas: Crystal Chemistry and Metamorphic Petrology Washington, D.C Mineralogical Society of America and the Geochemical Society 197.Google Scholar
Brigatti, M.F. Galli, E. and Poppi, L., (1991) Effect of Ti substitution in biotite-1M crystal chemistry American Mineralogist 76 11741186.Google Scholar
Brigatti, M.F. Medici, L. Saccani, E. and Vaccaro, C., (1996) Crystal chemistry and petrologic significance of Fe3+-rich phlogopite from the Tapira carbonatite complex, Brazil American Mineralogist 81 913927 10.2138/am-1996-7-814.CrossRefGoogle Scholar
Brigatti, M.F. Lugli, C. Poppi, L. and Elburg, M., (1998) Crystal chemistry of biotites from mafic enclaves in the Warburton granodiorite, Lachlan Fold Belt (Australia European Journal of Mineralogy 10 855864 10.1127/ejm/10/5/0855.Google Scholar
Brigatti, M.F. Medici, L. Poppi, L. and Vaccaro, C., (2001) Crystal chemistry of trioctahedral micas-1M from Alto Paranaíba Igneous Province, South-Eastern Brazil The Canadian Mineralogist 39 13331345 10.2113/gscanmin.39.5.1333.Google Scholar
Burns, R.G., (1970) Mineralogical Applications of Crystal Field Theory Cambridge, UK Cambridge University Press 53 59, 124.Google Scholar
Cesare, B. Cruciani, G. and Russo, U., (2003) Hydrogen deficiency in Ti-rich biotite from anatectic metapelites (El Joyazo, SE Spain): Crystal-chemical aspects and implications for high-temperature petrogenesis American Mineralogist 88 583595 10.2138/am-2003-0412.Google Scholar
Cruciani, G. and Zanazzi, P.F., (1994) Cation partitioning and substitution mechanism in 1M phlogopite: A crystal chemical study American Mineralogist 79 289301.Google Scholar
Cruciani, G. Zanazzi, P.F. and Quartieri, S., (1995) Tetrahedral ferric iron in phlogopite, XANES and Mössbauer comparison to single-crystal X-ray data European Journal of Mineralogy 1 255265 10.1127/ejm/7/2/0255.Google Scholar
de Groot, F.M.F. Figueireido, M.O. Basto, M.J. Abbate, M. Petersen, H. and Fuggle, J.C., (1992) 2p X-ray Absorption of Titanium in minerals American Mineralogist 19 140147.Google Scholar
Desimoni, E. and Malitesta, C., (1986) Interfacing an LHS10 Photoelectron Spectrometer to a microcomputer: Data acquisition and analysis Computer Enhanced Spectroscopy 3 107112.Google Scholar
Donnay, G. Morimoto, N. Takeda, H. and Donnay, J.D.H., (1964) Trioctahedral one-layer micas. I. Crystal structure of a synthetic iron mica Acta Crystallographica 17 13691373 10.1107/S0365110X64003450.Google Scholar
Donnay, G. Donnay, J.D.H. and Takeda, H., (1964) Trioctahedral one-layer micas. II Prediction of the structure from composition and cell dimensions Acta Crystallogaphica 17 13741381 10.1107/S0365110X64003462.Google Scholar
Ďurovič, S., (1981) OD-character, Polytypie und Identifikation von Schichtsilikaten Fortschritte der Mineralogie 59 191226.Google Scholar
Durovic, S., (1994) Classification of phyllosilicates according to the symmetry of their octahedral sheets Ceramics — Silikàty 38 8184.Google Scholar
Dyar, M.D. Guidotti, C.V. Holdaway, M.J. and Colucci, M., (1993) Nonstoichiometric hydrogen contents in common rock-forming hydroxyl silicates Geochimica et Cosmochimica Acta 57 29132918 10.1016/0016-7037(93)90399-H.Google Scholar
Dymek, R.F., (1983) Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland American Mineralogist 68 880899.Google Scholar
Farmer, G.L. and Boettcher, A.L., (1981) Petrologic and crystal chemical significance of some deep-seated phlogopites American Mineralogist 66 11541163.Google Scholar
Foley, S.F., (1989) Experimental constraints on phlogopite chemistry in lamproites: 1. The effect of water activity and oxygen fugacity European Journal of Mineralogy 1 411426 10.1127/ejm/1/3/0411.Google Scholar
Forbes, W.C. and Flower, M.F.J., (1974) Phase relations of titan-phlogopite, K2Mg4TiAl2Si6O20(OH)4: a refractory in the upper mantle? Earth and Planetary Science Letters 22 6066 10.1016/0012-821X(74)90064-8.Google Scholar
Güven, N., (1971) The crystal structure of 2M 1 phengite and 2M 1 muscovite Zeischrift für Kristallographie 134 196212.Google Scholar
Hawthorne, F.C. Ungaretti, L. and Oberti, R., (1995) Site populations in minerals: terminology and presentation of results The Canadian Mineralogist 33 907911.Google Scholar
Hazen, R.M. and Burnham, C.W., (1973) The crystal structure of one layer phlogopite and annite American Mineralogist 58 889900.Google Scholar
Henry, D.J. and Guidotti, C.V., (2002) Titanium in biotite from metapelitic rocks: Temperature effects, crystal-chemical controls, and petrologic applications American Mineralogist 87 375382 10.2138/am-2002-0401.Google Scholar
Kovalenko, N.I. Kashayev, A.A. Znamenskiy, Y.B. and Zhuravleva, R.M., (1968) Entry of titanium into micas (experimental studies). Geochemica International, translated from Geokhimiya 11 13481357.Google Scholar
Malitesta, C. Losito, I. Scordari, F. and Schingaro, E., (1995) XPS investigation of titanium in melanites from Monte Vulture (Italy) European Journal of Mineralogy 7 847858 10.1127/ejm/7/4/0847.Google Scholar
Nazzareni, S. Molin, G. Skogby, H. and Dal Negro, A., (2004) Crystal chemistry of Ti3+ — Ti4+-bearing synthetic diopsides European Journal of Mineralogy 16 443449 10.1127/0935-1221/2004/0016-0443.Google Scholar
North, A.C.T. Phillips, D.C. and Mathews, F.S., (1968) A semi-empirical method of absorption correction Acta Crystallographica A24 351359 10.1107/S0567739468000707.Google Scholar
Ohta, T. Takeda, H. and Takéuchi, Y., (1982) Mica polytypism: Similarities in the crystal structures of coexisting 1M and 2M 1 oxybiotite American Mineralogist 67 298310.Google Scholar
Otten, M.T. and Buseck, P.R., (1987) The oxidation state of Ti in hornblende and biotite determined by Electron Energy-Loss Spectroscopy, with inference regarding the Ti substitution Physics and Chemistry of Minerals 14 4551 10.1007/BF00311147.Google Scholar
Rager, H. Geiger, C.A. and Stall, A., (2003) Ti (III) in synthetic pyrope: a single crystal paramagnetic study European Journal of Mineralogy 15 697699 10.1127/0935-1221/2003/0015-0697.Google Scholar
Rancourt, D.G., (1994) Mössbauer Spectroscopy of Minerals I. Inadequacy of Lorentzian-line doublets in fitting spectra arising from Quadrupole Splitting Distributions Physics and Chemistry of Minerals 21 244249 10.1007/BF00202138.Google Scholar
Rancourt, D.G., (1994) Mössbauer Spectroscopy of Minerals II. Problems of resolving cis and trans octahedral Fe2+ sites Physics and Chemistry of Minerals 21 250257 10.1007/BF00202139.Google Scholar
Rancourt, D.G. and Ping, J.Y., (1991) Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy Nuclear Instruments and Methods in Physics Research B58 8597 10.1016/0168-583X(91)95681-3.Google Scholar
Rancourt, D.G. Dang, M.Z. and Lalonde, A.E., (1992) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas American Mineralogist 77 3443.Google Scholar
Rancourt, D.G. Ping, J.Y. and Berman, R.G., (1994) Mössbauer spectroscopy of minerals III. Octahedral site. Fe2+ quadrupole splitting distributions in the phlogopite—annite series Physics and Chemistry of Minerals 21 258267 10.1007/BF00202140.Google Scholar
Renner, B. and Lehmann, G., (1986) Correlation of angular and bond length distortions in TO4 units in crystals Zeitschrift für Kristallographie 175 4359.Google Scholar
Rieder, M. Cavazzini, G. D’Yakonov, Y.S. Frank-Kamenetskii, V.A. Gottardi, G. Guggenheim, S. Koval, P.V. Müller, G. Neiva, A.M.R. Radoslovich, E.W. Robert, J.-L. Sassi, F.P. Takeda, H. Weiss, Z. and Wones, D.R., (1998) Nomenclature of micas The Canadian Mineralogist 36 905912.Google Scholar
Righter, K. Dyar, M.D. Delaney, J.S. Vennemann, T.W. Hervig, R.L. and King, P.L., (2002) Correlations of octahedral cations with OH, O2−, Cl, and F in biotite from volcanic rocks and xenoliths American Mineralogist 87 142153 10.2138/am-2002-0115.Google Scholar
Robert, J.L., (1976) Titanium solubility in synthetic phlogopite solid solution Chemical Geology 17 213227 10.1016/0009-2541(76)90036-X.Google Scholar
Schwarcz, H.P., (1967) The effect of crystal field stabilization on the distribution of transition metals between metamorphic minerals Geochimica et Cosmochimica Acta 31 503517 10.1016/0016-7037(67)90031-2.Google Scholar
Scordari, F. Schingaro, E. and Pedrazzi, G., (1999) Crystal chemistry of melanites from Mt. Vulture (Southern Italy) European Journal of Mineralogy 11 855869 10.1127/ejm/11/5/0855.Google Scholar
Shannon, R.D., (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallographica A32 751767 10.1107/S0567739476001551.Google Scholar
Takeda, H. and Ross, M., (1975) Mica polytypism: dissimilarities in the crystal structures of coexisting 1M and 2M 1 biotite American Mineralogist 60 10301040.Google Scholar
Toraya, H., (1981) Distortions of octahedra and octahedral sheets in 1M micas and the relation to their stability Zeitschrift für Kristallographie 157 173190.Google Scholar
Trong On, D. and Bonneviot, L., (1992) Titanium sites in titanium silicalites: an XPS, XANES and EXAFS study Journal of Molecular Catalysis 74 233246 10.1016/0304-5102(92)80241-8.Google Scholar
Turner, S.P., (1996) Petrogenesis of the late-Delamerian gabbroic complex at Black Hill, South Australia: implications for convective thinning of the lithospheric mantle Mineralogy and Petrology 56 5189 10.1007/BF01162657.Google Scholar
Virgo, D. and Popp, R.K., (2000) Hydrogen deficiency in mantle-derived phlogopites American Mineralogist 85 753759 10.2138/am-2000-5-614.Google Scholar
Waters, D.J. and Charnley, N.R., (2002) Local equilibrium in polymetamorphic gneiss and the titanium substitution in biotite American Mineralogist 87 383396 10.2138/am-2002-0402.Google Scholar
Watkin, D.J., Flack, H.D. Parkanyi, L. and Simon, K., (1992) CRYSTALS, a programmable program Crystallographic Computing 6 — A Window on Modern Crystallography Oxford, UK Oxford Science Publications.Google Scholar
Watkin, D.J., (1994) The control of difficult refinements Acta Crystallographica A50 411437 10.1107/S0108767393012784.Google Scholar
Waychunas, G.A., (1987) Synchrotron radiation in XANES spectroscopy of Ti in minerals: effects of Ti bonding distances, Ti valence and site geometry on absorption edge structure American Mineralogist 72 89101.Google Scholar
Weiss, Z. Rieder, M. Chmielovà, M. and Krajìček, J., (1985) Geometry of the octahedral coordination in micas: a review of refined structures American Mineralogist 70 747757.Google Scholar