Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T02:58:18.708Z Has data issue: false hasContentIssue false

Cation Migration in Smectite Minerals: Electron Spin Resonance of Exchanged Fe3+ Probes

Published online by Cambridge University Press:  02 April 2024

V. Luca
Affiliation:
Chemistry Department, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
C. M. Cardile*
Affiliation:
Chemistry Division, Department of Scientific and Industrial Research, Private Bag, Petone, New Zealand
*
3Present address: Research and Development Laboratory, Alcoa of Australia Ltd., P.O. Box 161, Kwinana, Western Australia 6167, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The migration of interlayer Fe3+ cations into the structure of heated montmorillonite and Laponite has been studied by electron spin resonance (ESR), Mössbauer spectroscopy, and magnetic susceptibility measurements. The intensity of the ESR signal corresponding to interlayer Fe3+ in air-dried montmorillonite and Laponite increased linearly as the amount of interlayer Fe3+ increased. Changes in the spectra after thermal treatment indicate that Fe3+ cations migrated into the pseudohexagonal cavities of dehydrated montmorillonite and Laponite. The electrostatic interaction between the Fe3+ and the oxygen atoms defining the entrance to these cavities and the proton of the structural OH groups at the bottom of the cavities differ for the two smectites. Ferric cations were apparently bound more strongly within the pseudohexagonal cavities of the dehydrated montmorillonite than within the cavities of Laponite, because the montmorillonite did not rehydrate after heating. The differences in the binding of Fe3+ cations within the pseudohexagonal cavities of montmorillonite and Laponite were probably due to variations in the ability of the protons of the structural OH groups to reorient. An additional electronic interaction occurred in the heated Laponite, in which small cations were able to promote the formation of structural defects, which gave rise to a sharp ESR signal at g = 2.00. No evidence for the penetration of Fe3+ cations into the vacant octahedral sites of montmorillonite was found.

Type
Research Article
Copyright
Copyright © 1989, The Clay Minerals Society

References

Adrian, F.J., 1968 Guidelines for the intepreting of electron spin resonance spectra of paramagnetic species adsorbed on surfaces J. Coll. Int. Sci. 26 317358.CrossRefGoogle Scholar
Angel, B. R., Hall, P. L. and Serratosa, J. M., 1972 Electron spin resonance studies of kaolin Proc. Int. Clay Conf, Madrid, 1972 Madrid Div. Ciencias C.S.I.C. 4760.Google Scholar
Aronowitz, S., Coyne, L., Lawless, J. and Rishpon, J., 1982 Quantum chemical modelling of smectite clays Inorg. Chem. 21 35893593.CrossRefGoogle Scholar
Badran, A. H., Dwyer, J., Evmiridis, N. P. and Manford, A. J., 1977 Ferric ion exchange and breakdown of crystalline structure in zeolites Inorg. Chim. Acta 21 6164.CrossRefGoogle Scholar
Banin, A. (1973) Quantitative ion exchange process for clays: U.S. Patent 3,725,528, 14 pp.Google Scholar
Ben Hadj-Amara, A., Besson, G. and Tchoubar, C., 1987 Charactéristiques structurales d’une smectite dioctahéd- rique en fonction de l’ordre-désordre dans la distribution des charges électriques: I. Etudes des reflexions 00l Clay Miner. 22 305318.CrossRefGoogle Scholar
Berry, F. J., Hayes, M. H. B. and Jones, S. L., 1986 Investigations of intercalation in inorganic solids with layered structures: Iron-57 Mössbauer spectroscopy studies of sizefractionated and iron-exchanged montmorillonite clays Inorg. Chim. Acta 122 1924.CrossRefGoogle Scholar
Bookin, A. S. and Drits, V. A., 1982 Factors affecting orientation of OH-vectors in micas Clays & Clay Minerals 30 415421.CrossRefGoogle Scholar
Calvet, R. and Prost, R., 1971 Cation migration into empty octahedral sites and surface properties of clays Clays & Clay Minerals 19 175186.CrossRefGoogle Scholar
Che, M., Fraissard, J. and Vedrine, J. C., 1974 Applications de la résonance paramagnétique électronique et de la résonance magnétique nucléaire à l’étude des silicates et des argiles Bull. Groupe Franc. Argiles 26 153.CrossRefGoogle Scholar
Coyne, L. M. and Banin, A., 1986 Effect of adsorbed iron on thermoluminescence and electron spin resonance spectra of Ca-Fe exchanged montmorillonite Clays & Clay Minerals 34 645650.CrossRefGoogle ScholarPubMed
Coyne, L. M., Costanzo, P. and Theng, B. K. G., 1988 Concurrent changes in stored energy content and environment of structural iron in some hydrated kaolinites and metahalloysites as determined by temperature luminescence and electron spin resonance Clay Miner (in press).Google Scholar
Derouane, E. G., Mestdagh, M. and Vielvoye, L., 1974 EPR study of the nature and the removal of Fe(III) impurities in ammonium-exchanged NaY-zeolite J. Catalysis 33 169175.CrossRefGoogle Scholar
Evmiridis, N. P., 1986 Effect of crystal structure and percentage iron exchange on ESR spectra of hydrated Fe(III) ion exchanged synthetic zeolites Inorg. Chem. 25 169175.CrossRefGoogle Scholar
Giese, R. F., 1979 Hydroxyl orientations in 2:1 phyllosilicates Clays & Clay Minerals 27 213223.CrossRefGoogle Scholar
Glaeser, R. and Méring, J., 1967 Effet de chauffage sur les montmorillonites saturées de cations de petit rayon C.R. Acad. Sci. Paris 265 833835.Google Scholar
Goodman, B. A., 1978 An investigation by Mössbauer and EPR spectroscopy of the possible presence of iron-rich impurity phases in some montmorillonites Clay Miner. 13 351356.CrossRefGoogle Scholar
Gracium, C. and Meghea, A., 1985 Electron spin resonance studies of montmorillonite Clay Miner. 20 281291.Google Scholar
Helsen, J. A. and Goodman, B. A., 1983 Characterisation of iron(II)- and iron(III)-exchanged montmorillonite and hectorite using the Mössbauer effect Clay Miner. 18 117125.CrossRefGoogle Scholar
Hofmann, V. and Kiemen, R., 1950 Verlust der Austauschfahigheit von Lithiumionen an Bentonit durch Erhitzung Z. Anorg. Allg. Chem. 262 9599.CrossRefGoogle Scholar
Kemp, R.C., 1972 Electron spin resonance of Fe3+ in phlogopite J. Phys. C 5 35663572.CrossRefGoogle Scholar
Komarov, V. S., Rozin, A. T. and Akulich, N. A., 1977 Sites of the localization of exchange cations of heat-treated montmorillonite Zh. Prikl. Spektrosk. 26 10991103.Google Scholar
Kustov, L. M., Kazanskii, V. B. and Ratnasamy, P., 1987 Spectroscopic investigation of iron ions in a novel ferrisilicate pentasil zeolite Zeolites 7 7985.CrossRefGoogle Scholar
Lemons, K. W. and McAtee, J. L. Jr., 1983 The parameters of induced thermoluminescence of some selected phyllosilicates: A crystal defect structure study Amer. Miner. 68 915923.Google Scholar
Levanon, H. and Luz, Z., 1968 ESR and NMR of Mn(II) complexes in methanol J. Chem. Phys. 49 20312040.CrossRefGoogle Scholar
Levanon, H., Stein, C. and Luz, Z., 1968 The electron spin resonance spectrum of FeF6 3 in aqueous solutions J. Amer. Chem. Soc. 90 52925293.CrossRefGoogle Scholar
McBride, M. B. and Mortland, M. M., 1974 Cu(II) interactions with montmorillonite: Evidence from physical methods Soil Sci. Soc. Amer. Proc. 38 408415.CrossRefGoogle Scholar
McBride, M. B., Mortland, M. M. and Pinnavaia, T. J., 1975 Perturbation of structural Fe3+ in smectites by exchange ions Clays & Clay Minerals 23 103107.CrossRefGoogle Scholar
McBride, M. B., Mortland, M. M. and Pinnavaia, T. J., 1975 Exchange ion positions in smectite: Effects on electron spin resonance of structural iron Clays & Clay Minerals 23 162164.CrossRefGoogle Scholar
McBride, M. B., Pinnavaia, T. J. and Mortland, M. M., 1975 Electron spin relaxation and the mobility of manganese(II) exchange ions in smectites Amer. Miner. 60 6672.Google Scholar
McBride, M. B., Pinnavaia, T. J. and Mortland, M. M., 1975 Electron spin resonance studies of cation orientation in restricted water layers on phyllosilicate (smectite) surfaces J. Phys. Chem. 79 24302435.CrossRefGoogle Scholar
Meagher, A., 1988 Ferric hydrolysis in water: An iron-57 Mössbauer study using iron-exchanged Nahen Inorg. Chim. Acta 146 1923.CrossRefGoogle Scholar
Moore, D. M. and Hower, J., 1986 Ordered interstratihcation of dehydrated and hydrated Na-smectite Clays & Clay Minerals 34 379384.CrossRefGoogle Scholar
Mortland, M. M. and Raman, K. V., 1968 Surface acidity of smectite and relation to hydration, exchangeable cations and structure Clays & Clay Minerals 16 393398.CrossRefGoogle Scholar
Olivier, D., Vedrine, J. C. and Pézerat, H., 1975 Application de la résonance paramagnétique électronique à la localisation du Fe3+ dans les smectites Bull. Groupe Franc. Argiles 21 153156.CrossRefGoogle Scholar
Olivier, D., Vedrine, J. C., Pézerat, H. and Bailey, S. W., 1975 Résonance paramagnétique électronique de Fe3+ dans les argiles altérés artificiellement et dans le milieu naturel Proc. Int. Clay Conf., Mexico City, 1975 Illinois Applied Publishing, Wilmette 231238.Google Scholar
Olivier, D., Vedrine, J. C. and Pézerat, H., 1977 Application de la RPE à la localisation des substitutions isomorphiques dans les micas: Localisation du Fe3+ dans les muscovites et les phlogopites J. Solid State Chem. 20 267279.CrossRefGoogle Scholar
Ratnasamy, P., Borade, R. B., Sivasanker, S., Shiralkar, V. P. and Hedge, S. G., 1985 Structure and catalytic properties of ferrisilicate zeolites of the pentasil group Acta Phys. Chem. 31 12.Google Scholar
Tettenhorst, R., 1962 Cation migration in montmorillonites Amer. Mineral. 47 769773.Google Scholar
Wauchope, R. D. and Haque, R., 1971 ESR of clay minerals Nat. Phys. Sci. 233 141142.CrossRefGoogle Scholar
Wertz, J. E. and Bolton, J. R., 1972 Electron Spin Resonance Elementary Theory and Practical Applications New York Chapman and Hall 3235.Google Scholar
Wichterlova, B., 1981 Redox behaviour of iron (3+) impurities in 7 zeolites: ESR study Zeolites 1 181185.CrossRefGoogle Scholar
Wichterlova, B., Novakova, J., Kubelkova, L. and Mikusik, P., 1985 Effect of hydrothermal treatment on the properties of Fe(III)-Y zeolites Zeolites 5 2125.CrossRefGoogle Scholar