Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T20:15:24.476Z Has data issue: false hasContentIssue false

Cation Exchange Reactions of Vermiculite With Cu-Triethylenetetramine as Affected by Mechanical and Chemical Pretreatment

Published online by Cambridge University Press:  01 January 2024

Annett Steudel*
Affiliation:
Competence Center for Material Moisture (CMM), University Karlsruhe, c/o IFG, Forschungszentrum Karlsruhe, Germany Institute of Functional Interfaces, (IFG), Forschungszentrum Karlsruhe GmbH, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
Peter G. Weidler
Affiliation:
Institute of Functional Interfaces, (IFG), Forschungszentrum Karlsruhe GmbH, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
Rainer Schuhmann
Affiliation:
Competence Center for Material Moisture (CMM), University Karlsruhe, c/o IFG, Forschungszentrum Karlsruhe, Germany Institute of Functional Interfaces, (IFG), Forschungszentrum Karlsruhe GmbH, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
Katja Emmerich
Affiliation:
Competence Center for Material Moisture (CMM), University Karlsruhe, c/o IFG, Forschungszentrum Karlsruhe, Germany Institute of Functional Interfaces, (IFG), Forschungszentrum Karlsruhe GmbH, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The cation exchange capacity (CEC) is a characteristic property of expandable clay minerals, such as smectites and vermiculites. The aim of this work was to examine the cation exchange behavior of vermiculite using the Cu-triethylenetetramine (Cu-trien) CEC method and the influence of mechanical and chemical pretreatment, with the ammonium acetate method serving as a reference. The Cu-trien method makes rapid and direct CEC measurements possible. Three different kinds of mill were used to grind a vermiculite sample from Russia, in order to reduce the particle size to <10 µm. The Netzsch CGS 10 dry mill reduced the particle size more effectively than the other grinding methods. Chemical pretreatments were used to remove carbonates, organic matter, Fe oxides, and divalent exchangeable cations from vermiculite samples prior to CEC measurements. Subsamples of ground and chemically pretreated vermiculite samples were saturated with Na, Li, Mg, Ca, and Cu cations to determine the effect of exchangeable cations on measured CEC values. Chemical pretreatment, monovalent cation pretreatment, and 48 h of shaking time were needed to measure vermiculite CEC values effectively using the Cu-trien method.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Abate, G. and Masini, J.C., 2005 Influence of pH, ionic strength, and humic acid on adsorption of Cd(II) and Pb(II) onto vermiculite Colloids and Surfaces A: Physicochemical and Engineering Aspects 262 3339 10.1016/j.colsurfa.2005.04.005.CrossRefGoogle Scholar
Abollino, O. Giacomino, A. Malandrino, M. and Mentasti, E., 2008 Interaction of metal ions with montmorillonite and vermiculite Applied Clay Science 38 227236 10.1016/j.clay.2007.04.002.CrossRefGoogle Scholar
Amman, L. Bergaya, F. and Lagaly, G., 2005 Determination of the cation exchange capacity of clays with copper complexes revisited Clay Minerals 40 441453 10.1180/0009855054040182.CrossRefGoogle Scholar
Ballard, D.G.H. and Rideal, G.R., 1983 Flexible inorganic films and coating Journal of Materials Science 18 545561 10.1007/BF00560644.CrossRefGoogle Scholar
de la D’Espinose Caillerie, J.-B. and Fripiat, J.J., 1991 Dealumination and aluminum intercalation of vermiculite Clays and Clay Minerals 39 270280 10.1346/CCMN.1991.0390307.CrossRefGoogle Scholar
Emmerich, K., 2000 Die geotechnische Bedeutung des Dehydroxylierungsverhalten quellfahiger Tonminerale Switzerland ETH Zurich 143 pp.Google Scholar
Garrett, W.G. and Walker, G.F., 1960 Swelling of some vermiculite-organic complexes in water Clays and Clay Minerals 9 557567 10.1346/CCMN.1960.0090141.CrossRefGoogle Scholar
Ghabru, S.K. Mermut, A.R. and Arnaud, RJ St, 1989 Layer-charge and cation-exchange characteristics of vermiculite (weathered biotite) isolated froma Gray Luvisol in northeastern Saskatchewan Clays and Clay Minerals 37 164172 10.1346/CCMN.1989.0370208.CrossRefGoogle Scholar
v. Graf Reichenbach, H., 1966 Anomalien des Kationenaustausches bei Vermiculiten Zeitschrift für Pflanzenernährung, Düngung ünd Bodenkunde 113 203213 10.1002/jpln.19661130304.CrossRefGoogle Scholar
de Jimenez Haro, M.C. Martínez Blanes, J.M. Poyato, J. Pérez-Magueda, L.A. Lerf, A. and Pérez-Rodríquez, J.L., 2004 Effects of mechanical treatment and exchanged cation on the microporosity of vermiculite Journal of Physics and Chemistry of Solids 65 435439 10.1016/j.jpcs.2003.08.033.CrossRefGoogle Scholar
Konta, J., 1995 Clay and man: clay new material in the service of man Applied Clay Science 10 275335 10.1016/0169-1317(95)00029-4.CrossRefGoogle Scholar
Köster, H.M., 1977 Die Berechnung kristallchemischer Strukturformeln von 2:1-Schichtsilikaten unter Berücksichtigung der gemessenen Zwischenschichtladungen und Kationenumtauschkapazitäten, sowie die Darstellung der Ladungsverteilung in der Struktur mittels Dreieckskoordinaten Clay Minerals 12 4554 10.1180/claymin.1977.012.1.03.CrossRefGoogle Scholar
Lagaly, G. and Mermut, A.R., 1994 Layer charge determination by alkylammoniumions Layer Charge Characteristics of 2:1 Silicate Clay Minerals Boulder. Colorado, USA The Clay Minerals Society 146.Google Scholar
Lagaly, G., 1982 Layer charge heterogeneity in vermiculites Clays and Clay Minerals 30 215222 10.1346/CCMN.1982.0300308.CrossRefGoogle Scholar
Lagaly, G. and Weiss, A. (1969) Determination of the layer charge in mica-type layer silicates. 3rd International Clay Conference, Tokyo, Japan, pp. 6280.Google Scholar
Mackenzie, R.C., 1951 A micromethod for determination of cation-exchange capacity of clay Journal of Colloid Science 6 219222.Google Scholar
Maqueda, C. Romero, A.S. Morillo, E. and Pérez-Rodríquez, J.L., 2007 Effect of grinding on the preparation of porous materials by acid-leached vermiculite Journal of Physics and Chemistry of Solids 68 12201224 10.1016/j.jpcs.2007.01.037.CrossRefGoogle Scholar
Maqueda, C. Romero, A.S. Morillo, E. Pérez-Rodríquez, J.L. Lerf, A. and Wagner, F.E., 2008 The behaviour of Fe in ground and acid-treated vermiculite from Santa Olalla. Spain Clays and Clay Minerals 56 380388 10.1346/CCMN.2008.0560307.CrossRefGoogle Scholar
Mehra, O.P. and Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate-system buffered with sodium bicarbonate. 7th National Conference on Clays and Clay Minerals, Washington, D.C., USA, pp. 317327.Google Scholar
Meier, L.P. and Kahr, G., 1999 Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine Clays and Clay Minerals 47 386388 10.1346/CCMN.1999.0470315.CrossRefGoogle Scholar
Olis, A.C. Malla, P.B. and Douglas, L.A., 1990 The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion Clay Minerals 25 3950 10.1180/claymin.1990.025.1.05.CrossRefGoogle Scholar
Osman, M.A., 2006 Organo-vermiculites: synthesis, structure and properties. Platelike nanoparticles with high aspect ratio Journal of Materials Chemistry 16 30073013 10.1039/b606036f.CrossRefGoogle Scholar
Perez-Maqueda, L.A. Caneo, O.B. Poyato, J. and Pérez-Rodríquez, J.L., 2001 Preparation and characterization of micron and submicron-sized vermiculite Physics and Chemistry of Minerals 28 6166 10.1007/s002690000133.CrossRefGoogle Scholar
Pérez-Maqueda, L.A. de Jiménez Haro, M.C. Poyato, J. and Pérez-Rodríquez, J.L., 2004 Comparative study of ground and sonicated vermiculite Journal of Materials Science 39 53475351 10.1023/B:JMSC.0000039242.67213.4d.CrossRefGoogle Scholar
Pérez-Rodríquez, J.L. Carrera, F. Poyato, F. and Pérez-Maqueda, L.A., 2002 Sonication as a tool for preparing nanometric vermiculite particles Nanotechnology 13 382387 10.1088/0957-4484/13/3/328.CrossRefGoogle Scholar
Ramírez-Valle, V. Lerf, A. Wagner, F.E. Poyato, J. and Pérez-Rodríquez, J.L., 2008 Thermal study of polypyrrole complexes with vermiculites of different layer charge Journal of Thermal Analysis and Calorimetry 92 4351 10.1007/s10973-007-8734-z.CrossRefGoogle Scholar
Rich, C.I., 1961 Calcium determination for cation-exchange capacity measurements Soil Science Society of America Journal 92 226231 10.1097/00010694-196110000-00002.CrossRefGoogle Scholar
Suquet, H. Chevalier, S. Marcilly, C. and Barthomeuf, D., 1991 Preparation of porous materials by chemical activation of the Llano vermiculite Clay Minerals 26 4960 10.1180/claymin.1991.026.1.06.CrossRefGoogle Scholar
Temuujin, J. Okada, K. and McKenzie, K.J.D., 2003 Preparation of porous silica from vermiculite by selective leaching Applied Clay Science 22 187195 10.1016/S0169-1317(02)00158-8.CrossRefGoogle Scholar
Tributh, H. and Lagaly, G., 1986 Aufbereitung und Identifizierung von Boden- und Lagerstättentonen Teil I -Aufbereitung der Proben imLabor GIT Fachzeitschrift für das Laboratorium 30 524529.Google Scholar
Wiewióra, A. Pérez-Rodríguez, J.L. Pérez-Maqueda, L.A. and Drapala, J., 2003 Particle size distribution in sonicated high- and low-charged vermiculites Applied Clay Science 24 5158 10.1016/S0169-1317(03)00133-9.CrossRefGoogle Scholar
Wolters, F. Lagaly, G. Kahr, G. Nueesch, R. and Emmerich, K., 2009 A comprehensive characterisation of dioctahedral smectites Clays and Clay Minerals 57 104114 10.1346/CCMN.2009.0570111.CrossRefGoogle Scholar