Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T10:27:13.962Z Has data issue: false hasContentIssue false

Ca-K Exchange Reaction and Interstratification in Montmorillonite

Published online by Cambridge University Press:  01 July 2024

Atsuyuki Inoue
Affiliation:
Department of Earth Science and Astronomy, College of General Education University of Tokyo, Komaba, Meguro-ku, Tokyo 153, Japan
Hideo Minato
Affiliation:
Department of Earth Science and Astronomy, College of General Education University of Tokyo, Komaba, Meguro-ku, Tokyo 153, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cation-exchange equilibrium for Ca-K-montmorillonite was studied at 35°, 50°, and 90°C and at three total normalities of the equilibrium solution (0.1, 0.05, and 0.01 N). Changes of the standard free energy for the exchange from K-montmorillonite to Ca-montmorillonite were determined to be −53, −270, and −393 cal/eq at 35°, 50°, and 90°C, respectively. Changes of the standard enthalpy and entropy were 1.7 kcal/eq and 5.6 cal/eq/degree at 35°C, respectively. The sign of the change of the standard free energy was found to be determined mainly by the entropy change, in particular, by the hydration entropy of the cations.

The calculation of the excess functions indicates that the mixing model of Ca-K-montmorillonite approximates that of a regular solution. Montmorillonite having potassium equivalent ion fraction of 0.1 to 0.7 consists of a random interstratification of Ca-montmorillonite (15.6 Å) and K-montmorillonite (12.6 Å).

Резюме

Резюме

Изучалось катионно-обменное равновесие для Са-К-монтмориллонита при температурах 35°, 50°, и 90°С и при трех полных нормальностях равновесного раствора (0,1, 0,05, и 0,01 N). Изменения стандартной свободной энергии для обмена от К-монтмориллонита до Са-монтморилло-нита были определены как −53, −270, и −393 кал/эк при 35°, 50°, и 90°С соответственно. Изменения стандартной энтальпии и этропии были соответственно 1,7 ккал/эк и 5,6 кал/эк/градус при 35°С. Было установлено, что знак изменения стандартной свободной энергии определяется в основном изменением энтропии, в особенности гидрационной энтропии катионов.

Подсчет остаточных функций показывает, что модель смешивания Са-К-монтмориллонита апроксимирует модель обыкновенного раствора. Монтмориллонит, имеющий калиевую эквивалентную ионную фракцию от 0,1 до 0,7, характеризуется нерегулярным переслаиванием Са-монт-мориллонита (15,6 Å) и К-монтмориллонита (12,6 Å).

Resümee

Resümee

Das Kationenaustausch-Gleichgewicht für Ca-K-Montmorillonit wurde bei 35°, 50°, und 90°C und bei 3 Gesamtnormalitäten der Gleichgewichtslösung (0,1, 0,05, und 0,01 N) untersucht. Die Änderungen der freien Energie beim Austausch von K-Montmorillonit zu Ca-Montmorillonit ergaben Werte von −53, −270, und −399 cal/Äqu bei 35°, 50°, 90°C und bzw. Die Änderungen der Standard-Enthalpie und -Entropie betrugen 1,7 kcal/Äqu bzw. 5,6 cal/Äqu/Grad bei 35°C. Es zeigte sich, daß die Änderung der freien Energie vor allem von der Änderung der Entropie abhängt, insbesondere von der Hydratations-Entropie der Kationen.

Die Berechnung der Überschußenergien läßt erkennen, daß das Mischungsmodell für Ca-K-Montmorillonit dem einer regulären Lösung nahekommt. Montmorillonit mit einem Kalium-Ionenanteil von 0,1 bis 0,7 bestehen aus einer ungeordneten Wechsellagerung von Ca-Montmorillonit (15,6 Å) und K-Montmorillonit (12,6 Å).

Résumé

Résumé

L’équilibre d’échange de cations pour la montmorillonite Ca-K a été étudié à 35°, 50°, et 90°C et à trois normes totales de la solution d’équilibre (0,1, 0,05, et 0,01 N). Les changements d’énergie libre standard pour l’échange de montmorillonite-K à la montmorillonite-Ca ont été déterminés à −53, −270, et −393 cal/eq à 35°, 50°, et 90°C, respectivement. Les changements de l'enthalpie et de l'entropie standards étaient de 1,7 kcal/eq et 5,6 cal/eq/degré à 35°C, respectivement. On a trouvé que le signe du changement de l’énergie libre standard était déterminé principalement par le changement d'entropie, en particulier, par l'entropie d'hydratation des cations.

Le calcul des fonctions en excès indique que le modèle de mélange de montmorillonite-Ca-K est proche de celui d'une solution régulière. La montmorillonite ayant une fraction d'ion d’équivalent de potassium de 0,1 à 0,7 consiste en une interstratification au hasard de montmorillonite-Ca (15,6 Å) et de montmorillonite-K (12,6 Å).

Type
Research Article
Copyright
Copyright © 1979, The Clay Minerals Society

References

Chaussidon, J. (1963) Evolution des caractéristiques chimiques et cristallographique de montmorillonites biioniques K-Ca au cours d'alternances répétées d'humectation-dessiccation: Proc. Int. Clay Conf. Stockholm, 1, 195201.Google Scholar
Cobble, J. W. (1964) The thermodynamic properties of high temperature aqueous solution. VI. Applications of entropy correspondence to thermodynamics and kinetics: J. Amer, Chem. Soc. 86, 53945401.CrossRefGoogle Scholar
Deist, J. and Talibudeen, O. (1967a) Ion exchange in soils from the ion pairs K-Ca, K-Rb, and K-Na: J. Soil Sci. 18, 125137.CrossRefGoogle Scholar
Deist, J. and Talibudeen, O. (1967b) Thermodynamics of K-Ca ion exchange in soils: J. Soil Sci. 18, 138148.CrossRefGoogle Scholar
Gaines, G. L. Jr. and Thomas, H. C. (1953) Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption: J. Chem. Phys. 21, 714718.CrossRefGoogle Scholar
Gaines, G. L. Jr. and Thomas, H. C. (1955) Adsorption studies on clay minerals. V. Montmorillonite–cesium–strontium at several temperatures: J. Chem. Phys. 23, 23222326.CrossRefGoogle Scholar
Glaeser, R. and Mering, J. (1954) Isothermes d'hydration des montmorillonites bi-ioniques (Na, Ca): Clay Miner. Bull. 2, 188193.CrossRefGoogle Scholar
Glueckauf, E. (1949) Activity coefficients in concentrated solutions containing several electrolytes: Nature 163, 414415.CrossRefGoogle Scholar
Guggenheim, E. A. (1952) Mixtures: Clarendon Press, Oxford, p. 270.Google Scholar
Howery, D. G. and Thomas, H. C. (1965) Ion exchange on the mineral clinoptilolite: J. Phys. Chem. 69, 531537.CrossRefGoogle Scholar
Hutcheon, A. T. (1966) Thermodynamics of cation exchange on clay; Ca-K-montmorillonite: J. Soil Sci. 17, 339355.CrossRefGoogle Scholar
Laudelout, H., van Bladel, R., Gilbert, M., and Cremers, A. (1968) Physical chemistry of cation exchange in clays: Int. Congr. Soil Sci., Trans., 9th, (Adelaide, Australia) 1, 565575.Google Scholar
MacEwan, D. M. C., Ruiz Amil, A., and Brown, G. (1961) Interstratified clay minerals: in X-ray Identification and Crystal Structures of Clay Minerals, Brown, G., ed., Mineralogical Society, London, 393445.Google Scholar
McAtee, J. L. (1956) Random interstratification in montmorillonite: Amer. Mineral. 41, 627631.Google Scholar
McBride, M. B. (1976) Exchange and hydration properties of Cu2+ on mixed ion Na+-Cu2+ smectite: Soil Sci. Soc. Amer. Proc. 40, 452456.CrossRefGoogle Scholar
Mering, J. and Glaeser, R. (1953) Cations éxchangeables dans montmorillonites: C. R. Reunions Groupe Fr. Argiles 5, 6172.Google Scholar
Sato, M. (1965) Structure of interstratified (mixed-layer) minerals: Nature 208, 7071.CrossRefGoogle Scholar
Talibudeen, O. (1971) The fertility status of soil potassium related to K: Ca exchange isotherms from ‘Double-label’ experiments: Proc. Int. Symp. Soil Fertility Evaluation, New Delhi, 1, 97103.Google Scholar
Thompson, J. B. Jr. (1967) Thermodynamic properties of simple solutions: in Researches in Geochemistry II, Abelson, P. H., ed., John Wiley & Sons, New York, 340361.Google Scholar
Truesdell, A. H. and Christ, C. L. (1968) Cation exchange in clays interpreted by regular solution theory: Amer. Mineral. 266, 402412.Google Scholar