Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T13:50:05.139Z Has data issue: false hasContentIssue false

Burial Diagenesis in Two Montana Tertiary Basins

Published online by Cambridge University Press:  02 April 2024

Douglas K. McCarty
Affiliation:
Department of Geology, University of Montana, Missoula, Montana 59812
Graham R. Thompson
Affiliation:
Department of Geology, University of Montana, Missoula, Montana 59812
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Samples from initially smectite-rich Tertiary continental volcaniclastic sediment from the Deer Lodge and Big Hole basins of southwestern Montana show a general decrease in illite/smectite (I/S) expandability with increasing burial depth. The mineralogical trends in cuttings from seven wells are interrupted by discontinuities in which I/S expandability abruptly decreases by 30 to 80%. These discontinuities coincide with stratigraphic unconformities in four wells in which the stratigraphy is known. Core samples show a wide range of I/S expandabilities over short stratigraphic intervals, possibly due to composition, porosity, and permeability variations. Sericite coexists with I/S in the deep core samples. A core sample from 7958 ft (2425 m) contains an R3-ordered I/S having a nearly ideal 3:1 illite: smectite ratio, similar to the mineral tarasovite. The structure of this I/S is dominated by stacks of four 2:1-layer fundamental illite particles and small proportions of thicker particles randomly interstratified among the four-layer particles.

Type
Research Article
Copyright
Copyright © 1991, The Clay Minerals Society

References

Boles, J. R. and Franks, S. G., 1979 Clay diagenesis in Wilcox sandstones of southwest Texas: Implications of smectite diagnesis on sandstone cementation J. Sed. Petrology 49 5570.Google Scholar
Brindley, G. W. and Suzuki, T., 1983 Tarasovite, a mixed layer illite-smectite which approaches an ordered 3:1 layer ratio Clay Miner 18 8994.CrossRefGoogle Scholar
Burst, J. F. Jr. and Swineford, A., 1959 Postdiagenetic clay mineral environmental relationships in the Gulf Coast Eocene Clays and Clay Minerals, Proc. 6th Nat. Conf., Berkeley, California, 1957 New York Pergamon Press 327341.Google Scholar
Carroll, D., 1970 Clay minerals: A guide to their X-ray identification Geol. Soc. Amer. Spec. Pap 126 712.Google Scholar
de Dunoyer Segonzac, G., 1970 The transformation of clay minerals during diagenesis and low-grade metamorphism Sedimentology 15 281346.CrossRefGoogle Scholar
Dutta, P. K. and Suttner, L. J., 1986 Alluvial sandstone composition and paleoclimate, II. Authigenic mineralogy J. Sed. Petrology 56 346358.Google Scholar
Eberl, D. D. and Hower, J., 1976 Kinetics of illite formation Geol. Soc. of Amer. Bull 87 13261330.2.0.CO;2>CrossRefGoogle Scholar
Eberl, D. D. and Środoń, J., 1988 Ostwald ripening and interparticle-diffraction effects for illite crystals A mer. Miner 73 13351345.Google Scholar
Eberl, D. D., Środoń, J., Lee, M., Nadeau, P. H. and Northrop, H. R., 1987 Sericite from the Silverton caldera, Colorado: Correlation among structure, composition, origin, and particle thickness Amer. Mineral 72 914934.Google Scholar
Eberl, D. D. and Środoń, J. H. R., 1986 Potassium fixation in smectite by wetting and drying Geochemical Processes at Mineral Surfaces 323 296326.CrossRefGoogle Scholar
Ehinger, R. F., Goers, J. W., Hall, M. L., Harris, W. L., Illich, H. A., Petkewich, R. M., Pevear, D. R., Stuart, C. J. and Thompson, G. R., 1965 Clay mineralogy of Mezozoic sediments in the vicinity of Drummond, Montana Billings Geol. Soc. 16th Ann. Field Conf, August 12–14, 1965, Geology of the Flint Creek Range Montana 5866.Google Scholar
Fields, R. W., Rasmussen, D. L., Tabrum, A. R., Nichols, R., Flores, R. M. and Kaplan, S. S., 1985 Cenozoic rocks of the intermontaine basins of western Montana and eastern Idaho Rocky Mountain Paleogeography, Symposiums: Cenozoic Paleogeography of West-Central United States 936.Google Scholar
Güven, N., 1971 Structural factors controlling stacking sequences in dioctahedral micas Clays & Clay Minerals 34 159165.CrossRefGoogle Scholar
Howard, J. J., Schultz, L. G., van Olphen, H. and Mumpton, F. A., 1987 Influence of shale fabric on illite/smectite diagenesis in the Oligocene Frio Formation, south Texas Proc. Int. Clay Conf, Denver, 1985 Bloomington, Indiana The Clay Minerals Society 144150.Google Scholar
Hower, J., Eslinger, E. V., Hower, M. E. and Perry, E. A., 1976 Mechanism of burial metamorphism of argillaceous sediment, mineralogical and chemical evidence Geol. Soc. of Amer. Bull 87 725737.2.0.CO;2>CrossRefGoogle Scholar
Huang, W. L., 1988 Controls on ordering of mixed-layer smectite/illite: an experimental study in Abstracts and Program, 25th Ann. Meeting Michigan The Clay Minerals Society, Grand Rapids 94.Google Scholar
Iagmin, P. J., 1972 Tertiary volcanic rocks south of Anaconda .Google Scholar
Jennings, S. and Thompson, G. R., 1986 Diagenesis of Plio-Pleistocene sediments of the Colorado River Delta, southern California J. Sed. Petrology 56 8998.Google Scholar
Kuenzi, W. D. and Fields, R. W., 1971 Tertiary stratigraphy, structure, and geologic history, Jefferson Basin, Montana Geol. Soc. Amer. Bull 82 33733394.CrossRefGoogle Scholar
Lazarenko, E. K., 1949 Hydromicas of clay formation Mineral. Sbornik L’vov Geol. Obshch 3 4152.Google Scholar
Lazarenko, E. K. (1965). A mica-like mineral from Nagol’naya Tarasovka, in the Donets basin: Mineral. Sbornik L’vovsk. Gos. Univ. 19, 1625 pp. (in Russian).Google Scholar
Lazarenko, E. K. and Korolev, Yu M, 1970 Tarasovite, a new dioctahedral ordered interlayered mineral Zapiski Vses. Obshch. 99. 214-224 .Google Scholar
McLeod, P. J., 1987 The depositional history of the Deer Lodge Basin, western Montana Missoula, Montana University of Montana.Google Scholar
Moore, D. M. and Reynolds, R. C. Jr., 1989 X-ray Diffraction and the Identification and Analysis of Clay Minerals Oxford New York Oxford University Press.Google Scholar
Nadeau, P. H., Wilson, M. J., McHardy, W. J. and Tait, J. M., 1984 Interparticle diffraction: A new concept for interstratified clays Clay Miner 19 757769.CrossRefGoogle Scholar
Nadeau, P. H., Wilson, M. J., McHardy, W. J. and Tait, J. M., 1984 Interstratified clays as fundamental particles Science 225 923925.CrossRefGoogle ScholarPubMed
Pearson, M. J., Watkins, D., Small, J. S., van Olphen, H. and Veniale, F., 1981 Clay diagenesis and organic maturation in northern North Sea sediments Proc. Int. Clay Conf., Bologna, Pavia, 1981 Amsterdam Elseveir 665675.Google Scholar
Pollastro, R. M. (1982) A recommended procedure for the preparation of oriented clay-mineral specimens for X-ray diffraction analysis: Modifications to Drever’s filter-membrane-peel technique: U.S. Geol. Surv. Open File Rept. 82–71, 24 pp.Google Scholar
Radoslovich, E. W. and Norrish, K., 1962 The cell dimensions and symmetry of larger lattice silicates. I. Some structural considerations Amer. Mineral 47 559616.Google Scholar
Reynolds, R. C., 1985 NEWMOD computer program for the calculation of the one-dimensional X-ray diffraction patterns of mixed-layer clays .Google Scholar
Reynolds, R. C. and Hower, J., 1970 The nature of inter-layering in mixed-layer illite-montmorillonites Clays & Clay Minerals 18 2536.CrossRefGoogle Scholar
Robinson, R. C., 1967 Geologic map of the Toston quadrangle, southwestern Montana U.S. Geol. Survey Misc. Geol. Invest .Google Scholar
Schultz, L. G. (1978) Mixed-layer clay in the Pierre Shale and equivalent rocks, northern Great Plains Region. U.S. Geol. Surv. Prof. Pap. 1064–A, 28 pp.Google Scholar
Środoń, J., 1980 Precise identification of illite/smectite interstratifications by X-ray powder diffraction Clays & Clay Minerals 32 33373349.Google Scholar
Środoń, J., 1981 X-ray identification of randomly interstratified illite-smectite in mixtures with discrete illite Clay Miner 16 297304.CrossRefGoogle Scholar
Środoń, J., 1984 Mixed-layer illite-smectite in low-temperature diagenesis: Data from the Miocene of the Carpathian foredeep Clay Miner 19 205215.CrossRefGoogle Scholar
Środoń, J., 1984 X-ray identification of illitic materials Clays & Clay Minerals 32 337349.CrossRefGoogle Scholar
Thompson, G. R., Fields, R. W. and Alt, D., 1982 Land-based evidence for Tertiary climatic variations: Northern Rockies Geology 10 413417.2.0.CO;2>CrossRefGoogle Scholar
Velde, B., 1965 Experimental determination of muscovite polymorph stabilities Amer. Mineral 50 436449.Google Scholar
Velde, B., Suzuki, T. and Nicot, E., 1986 Pressure-temperature composition of illite/smectite mixed-layer minerals: Niger Delta mudstones and other examples Clays & Clay Miner 34 435441.CrossRefGoogle Scholar
Whitney, G. and Northrop, H. R., 1988 Experimental investigation of the smectite to illite reaction: Dual reaction mechanisms and oxygen-isotope systemmatics Amer. Mineral 73 7790.Google Scholar
Yoder, H. S. and Eugster, H. P., 1955 Synthetic and natural muscovites Geochim. Cosmochim. Acta 8 225280.CrossRefGoogle Scholar