Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T13:19:17.238Z Has data issue: false hasContentIssue false

Burial and Contact Metamorphism in the Mancos Shale

Published online by Cambridge University Press:  01 July 2024

Paul H. Nadeau*
Affiliation:
Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755
Robert C. Reynolds Jr.
Affiliation:
Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755
*
1Present address: The Anschutz Corporation, 555 17th St., Denver, Colorado 80202.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Clay samples from shales and bentonites in the Mancos Shale (Cretaceous) and its stratigraphic equivalents in the southern Rocky Mountain and Colorado Plateau have been analyzed by X-ray powder diffraction methods. The major clay in the shales is mixed layered illite/smectite, with 20–60% illite layers. The regional distribution of ordered vs. random interstratification in the illite/smectite is consistent with the concept of burial metamorphism in which smectite interlayers are converted to illite, resulting finally in ordered interstratification. The interstratification data correlate with other geologic information, including rank of coal and Laramide tectonic activity. In addition, contact metamorphism of the shale by Tertiary igneous intrusions produced a similar clay suite. Chemical variation within these shales (particularly the presence or absence of carbonate) affected the clay conversion reactions in the interbedded bentonites and the shale itself during the early stages of transformation. In extreme cases, shales and bentonites from a single outcrop may contain clays that range from pure smectite (calcareous shales) to ordered illite/smectite containing ⩾50% illite layers (noncalcareous shales). The use of mixed-layered illite/smectite compositions to infer thermal regimes, therefore, may be misleading unless allowance is made for local chemical controls.

Резюме

Резюме

Образцы глин из сланцев и бентониты из Манкос Сланца (мелового) и их стратиграфические эквиваленты в южных Сколистых Горах и на Плато Колорадо анализировались методом порощковой рентгеновской дифракции. Гдавной глиной в сланцах являлся смешанно-слойный иллит/смектит с 20–60% иллитовых слоев. Местное распределение упорядоченной-случайной внутреннoй стратификации в иллите/смектите соответствует гипотезе метаторфизма захоронений, при котором слои смектита преобразовавались в иллит, результатом чего была упорядоченная внутренняя стратификация. Данные по этой стратификации соответствовали другим геологическим информациям, включая степень науглероживания угля и ларамидо-тектоническую активность. Дополнительно, контактный метаморфизм сланца приводил к образованию подобных систем глин путем третичных изверженных интрузии. Химические изменения внутри этих сланцев (особенно присутствие или отсутствие карбонатов) влияли на реакции преобразования глин во внутринапластованных бентонитах и самых сланцах в течение ранних стадий трансформации. В исключительных случаях сланцы и бентониты из одного обнажения пород могут содержать глины от чистого смектита (известковые сланцы) до упорядоченных иллитов/смектитов, содержащих ⩾50% иллитовых слоев (неизвестковые сланцы). Использование составов смещаннослойных иллитов/смектитов для определения термальных режимов, таким образом, может быть ошибочным, если не принять во внимание местный химический контроль. [Е.С.]

Resümee

Resümee

Es wurden Tonproben aus Schiefertonen und Bentoniten im Mancos Schieferton (Kreidezeit) und aus den stratigraphisch äquivalenten Schichten der südlichen Rocky Mountain und des Colorado Plateau mittels Röntgenpulverdiffraktometer-Methoden untersucht. Das überwiegende Tonmineral in den Schiefertonen ist eine Illit/Smektit-Wechsellagerung mit 20–60% Illitlagen. Die regionale Verteilung von regelmäßigen vs. unregelmäßigen Wechsellagemngen im Illit/Smektit stimmt mit der Vorstellung einer Versenkungsmetamorphose überein, durch die die Smektit-Zwischenlagen in Illit umgewandelt werden, wodurch letztlich eine regelmäßige Wechsellagerung eutsteht. Die Ergebnisse über die Wechsellagerung stimmen mit anderen geologischen Informationen einschließlich Koldearten und laramische Tektonik überein. Darfüberhinaus lieferte die Kontaktmetamorphose der Schierfertone durch tertiäre Intrusionen eine ähnliche Tonabfolge. Chemische Schwankungen innerhalb dieser Schiefertone (vor allem alas Vorhandensein oder Nichtvorhandensein von Karbonat) beeinilussen während der ersten Umwandlungsstadien die Umwandlungsreaktionen des Tons in den zwischengelagerten Bentoniten und im Schieferton selbst. In extremen Fällen können Schiefertone und Bentonite aus eiuem einzigen Aufschluß Tonminerale enthalten, die vom reinen Smektit (kalkhaltiger Schieferton) bis zur regelmäßigen Illit/Smektit-Wechsellagerung mit ⩾50% Illitlagen (kalkfreier Schieferton) reichen. Eine Schlußfoigerung von den Zusammensetzungen der Illit/Smektit-Wechsellagerungen auf thermische Einflüsse kann daher irreführend sein, wenn nicht lokale chemische Untersuchungen in Betracht gezogen werden. [U.W.]

Résumé

Résumé

On a analysé par des méthodes de diffraction poudrée aux rayons-X des échantillons d'argile de shales et de bentonites dans le shale Mancos (crétacé) et duns ses équivalents stratigraphiques dans les Montagnes Rocheuses du sud et sur le plateau du Colorado. L'argile majeure dans les shales est l'illite/smectite à couches mélangées, avec 20–60% de couches d'illite. La distribution régionale d'interstratification ordonnée par rapport à l'interstratificafion sans ordre dans l'illite/smectite est compatible avec le concept de métamorphisme à l'enterrement, dans lequel les intercouches de smectite sont converties à l'illite, résultant finalement en une interstratflication ordonnée. Les données d'interstratification s'accordent avec d'autres renseignements géologiques, y compris le rang de charbon, et l'activité tectonique Laramide. De plus, le métamorphisme par contact du shale par des intrusions ignées a produit la même suite argileuse. La variation chimique au sein de ces shales (particulièrement la présence ou l'absence de carbonate) affecte les réactions de conversion d'argile dans les bentonites interfeuillets et dans le shale lui-même pendant les premiers stages de la transformation. Dans les cas extrèmes, les shales et les bentonites d'un seul affleurement peuvent contenir des argiles qui s’étagent de smectite pure (shales calcareux) à une illite/smectite ordonnée contenant ⩾50% de couches d'illite (shales non calcareux). C'est pourquoi l'emploi de compositions d'illite/smectite à couches mélangées pour impliquer des régimes thermaux peut être trompeur, à moins qu'on ne tienne compte de contrôles chimiques locaux. [D.J.]

Type
Research Article
Copyright
Copyright © 1981, The Clay Minerals Society

Footnotes

2

Burial metamorphism is defined as low-grade metamorphism without the effects of penetrative deformation (Coombs, 1961; Zen, 1974). Other workers described these clay mineral transformations as diagenetic (Perry and Hower, 1970; Frey, 1970).

References

Aronson, J. L. and Hower, J., (1976) Mechanism of burial metamorphism of argillaceous sediments; II. Radiogenic argon evidence Geol. Soc. Amer. Bull. 87 738744.2.0.CO;2>CrossRefGoogle Scholar
Averitt, P. and Mallory, W. W., (1972) Coal Geologic Atlas of the Rocky Mountain Region Denver, Colorado Assoc. Rocky Mountain Geol. 297299.Google Scholar
Burbank, W. W. and Lovering, T. S., (1933) Relation of stratigraphy, structure, and igneous activity to ore deposits of Colorado and Southern Wyoming Ore Deposits of the Western States New York Amer. Inst. Mining Metall. Eng. 272313.Google Scholar
Burst, J. F. Jr. and Swineford, A., (1959) Postdiagenetic clay mineral environmental relationships in the Gulf Coast Eocene Clays and Clay Minerals, Proc. 6th Natl. Conf., Berkeley, California, 1957 New York Pergamon Press 327341.Google Scholar
Cobban, W. A. and Mallory, W. W., (1972) Cretaceous stages Geologic Atlas of the Rocky Mountain Region Denver, Colorado Assoc. Rocky Mountain Geol. 190206.Google Scholar
Cobban, W. A. and Reeside, J. B. Jr., (1952) Correlation of the Cretaceous formations of the Western Interior of the United States Geol. Soc. Amer. Bull. 63 10111044.CrossRefGoogle Scholar
Coombs, D. S., (1961) Some recent work on the lower grades of metamorphism Austral. J. Sci. 24 203215.Google Scholar
Cross, W. and Purington, C. W. (1899) Description of the Telluride quadrangle, Colorado: U.S. Geol. Surv. Atlas, Folio 57.Google Scholar
Disbrow, A. E. and Stoll, W. C. (1957) Geology of the Cerrillos area, Santa Fe County, New Mexico: New Mexico Bur. Mines Mineral Res. Bull. 48, 73 pp.Google Scholar
Dunoyer de Segonzac, G., (1970) The transformation of clay minerals during diagenesis and low-grade metamorphism: A review Sedimentology 15 281346.CrossRefGoogle Scholar
Eberl, D. D. (1971) Experimental diagenetic reactions involving clay minerals: Ph.D. Diss., Case Western Reserve Univ., Cleveland, Ohio, 145 pp.Google Scholar
Eberl, D. D., (1977) Hydrothermal transformation of sodium and potasium smectite into mixed-layer clay Clays & Clay Minerals 25 215227.CrossRefGoogle Scholar
Eberl, D. D., (1978) The reaction of montmorillonite to mixedlayered clay: the effect of interlayer alkali and alkaline earth cations Amer. Mineral. 42 17.Google Scholar
Eberl, D. D. and Hower, J., (1976) Kinetics of illite formation Geol. Soc. Amer. Bull. 87 13261330.2.0.CO;2>CrossRefGoogle Scholar
Eslinger, E. V. Savin, S. M. and Yeh, H., (1979) Oxygen isotope geothermometry of diagenetically altered shales Soc. Econ. Paleontol. Mineral. Spec. Publ. 26 113124.Google Scholar
Foscolos, A. E. and Kodama, H., (1974) Diagenesis of clay minerals from Lower Cretaceous shales of northeastern British Columbia Clays & Clay Minerals 22 319335.CrossRefGoogle Scholar
Frey, M., (1970) The step from diagenesis to metamorphism in pelitic rocks during orogenesis Sedimentology 15 261279.CrossRefGoogle Scholar
Gill, J. R. and Cobban, W. A. (1966) The Red Bird Section of the Upper Cretaceous Pierre Shale in Wyoming, with a section on a new Echinoid from the Cretaceous Pierre Shale of eastern Wyoming, by P. M. Kier: U.S. Geol. Surv. Prof. Pap. 393–A, 73 pp.Google Scholar
Gill, J. R., Cobban, W. A., and Schultz, L. G. (1972) Stratigraphy and composition of the Sharon Springs member of the Pierre Shale in western Kansas: U.S. Geol. Surv. Prof. Pap. 728, 50 pp.Google Scholar
Heroux, Y. Chagnon, A. and Bertrand, R., (1979) Compilation and correlation of major thermal maturation indicators Amer. Assoc. Petrol. Geol. Bull. 63 21282144.Google Scholar
Hoffman, J. and Hower, J., (1979) Clay mineral assemblages as low-grade metamorphic geothermometers: Application to the thrust faulted disturbed belt of Montana, U.S.A. Soc. Econ. Paleontol. Mineral. Spec. Publ. 26 5579.Google Scholar
Hower, J. Eslinger, W. V. Hower, M. and Perry, E. A., (1976) Mechanism of burial metamorphism of argillaceous sediments: I. Mineralogical and chemical evidence Geol. Soc. Amer. Bull. 87 725737.2.0.CO;2>CrossRefGoogle Scholar
Jagodzinski, H., (1949) Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Röntgeninterferenzen. I. Berechnung des Fehlordnungsgrades aus der Röntgenintensitäten Acta Crystallogr. 2 201207.CrossRefGoogle Scholar
Kauffman, E. G., (1969) Cretaceous marine cycles of the western interior Mt. Geol. 6 227245.Google Scholar
Kauffman, E. G., (1977) Geological and biological overview: Western interior Cretaceous basin Mt. Geol. 14 7599.Google Scholar
Lovering, T. T., (1935) Theory of heat conduction applied to geological problems Geol. Soc. Amer. Bull. 46 6994.CrossRefGoogle Scholar
McGookey, D. P. and Mallory, W. W., (1972) Cretaceous system Geologic Atlas of the Rocky Mountains Region Denver, Colorado Assoc. Rocky Mountain Geol. 190228.Google Scholar
Nadeau, P. H. (1980) Burial and contact metamorphism in the Mancos Shale: Ph.D. Diss., Dartmouth College, Hanover, New Hampshire, 200 pp.Google Scholar
Parachoňiak, W. and Środoń, J., (1973) The formation of kaolinite, montmorillonite and mixed-layer montmorilloniteillites during the lateration of Carboniferous tuff (the upper Silesian coal basin) Mineral. Polonica 4 3752.Google Scholar
Perry, E. A., (1974) Diagenesis and the K-Ar dating of shale and clay minerals Geol. Soc. Amer. Bull. 85 827830.2.0.CO;2>CrossRefGoogle Scholar
Perry, E. A. and Hower, J., (1970) Burial diagenesis in Gulf Coast pelitic sediments Clays & Clay Minerals 18 165177.CrossRefGoogle Scholar
Pliler, R. and Adams, J. A. S., (1962) The distribution of thorium, uranium, and potassium in the Mancos Shale Geochim. Cosmochim. Acta 26 11151135.CrossRefGoogle Scholar
Poole, F. G., (1954) Structure and stratigraphy of the Grand Hogback south of Glenwood Springs, Colorado Geol. Soc. Amer. Bull. 65 1386.Google Scholar
Powers, M. C. and Swineford, A., (1959) Adjustment of clays to chemical change and the concept of the equivalence level Clays & Clay Minerals, Proc. 6th Natl. Conf, Berkeley, California, 1957 New York Pergamon Press 309326.Google Scholar
Reynolds, R. C. Jr., (1967) Interstratified clay systems: Calculation of the total one-dimensional diffraction function Amer. Mineral. 52 661672.Google Scholar
Reynolds, R. C. Jr. and Hower, J., (1970) The nature of interlayering in mixed layer illite-montmorillonites Clays & Clay Minerals 18 2536.CrossRefGoogle Scholar
Schultz, L. G. and Bradley, W. F., (1963) Nonmontmorillonitic composition of some bentonite beds Clays and Clay Minerals, Proc. 11th Natl. Conf., Ottawa, Ontario, 1962 New York Pergamon Press 169177.Google Scholar
Schultz, L. G. (1978) Mixed-layer clay in the Pierre Shale and equivalent rocks, northern Great Plains Region: U.S. Geol. Surv. Prof. Pap. 1064–A, 28 pp.Google Scholar
Schultz, L. G., Tourtelot, H. A., Gill, J. R., and Boerngen, J.G. (1980) Composition and properties of the Pierre Shale and equivalent rocks, northern Great Plains Region: U.S. Geol. Surv. Prof. Pap. 1064–B, 114 pp.Google Scholar
Scott, G. R. (1977) Reconnaissance geologic map of the Canon City Quadrangle, Fremont County, Colorado: U.S. Geol. Surv. Misc. Field Studies Map MG–892.Google Scholar
Środoń, J., Mortland, M. M. and Farmer, V. C., (1979) Correlation between coal and clay diagenesis in the Carboniferous of the Upper Silesian coal basin Proc. Int. Clay Conf, Oxford, 1978 Amsterdam Elsevier 251260.Google Scholar
Suess, E., (1900) La face de la terre II Les Mers Paris Armand Colin.Google Scholar
Tourtelot, H. A. Schultz, L. G. and Gill, J. R., (1960) Stratigraphic variations in mineralogy and chemical composition of the Pierre Shale in South Dakota and adjacent parts of North Dakota, Nebraska, Wyoming, and Montana Short Papers in the Geological Sciences, U.S. Geol. Surv. Prof. Paper 400–B 447452.Google Scholar
Tweto, O., (1975) Laramide (Late Cretaceous-early Tertiary) orogeny in the Southern Rocky Mountains Geol. Soc. Amer. Mem. 144 144.Google Scholar
Vanderwilt, J. W. Gilbert, R. E. Bailey, R. E. and Mallory, W. W., (1972) Base and precious metals Geologic Atlas of the Rocky Mountain Region Denver, Colorado Assoc. Rocky Mountain Geol. 300314.Google Scholar
Weaver, C. E., (1960) Possible uses of clay minerals in search for oil Amer. Assoc. Petrol. Geol. Bull. 44 15051518.Google Scholar
Weaver, C. E. and Beck, K. C. (1971) Clay water diagenesis during burial: How mud becomes gneiss: Geol. Soc. Amer. Spec. Pap. 134, 96 pp.Google Scholar
Weimer, R. J., (1960) Upper Cretaceous stratigraphy, Rocky Mountain area Amer. Assoc. Petrol. Geol. Bull. 44 120.Google Scholar
Yeh, H-W. and Savin, S. M., (1977) Mechanism of burial metamorphism of argillaceous sediment: 3. Oxygen isotopic evidence Geol. Soc. Amer. Bull. 88 13211330.2.0.CO;2>CrossRefGoogle Scholar
Young, R. G., (1955) Sedimentary facies and intertonguing in the Upper Cretaceous of the Book Cliffs, Utah-Colorado Geol. Soc. Amer. Bull. 66 177202.CrossRefGoogle Scholar
Zen, E.-A., (1974) Burial metamorphism Can. Mineral. 12 445455.Google Scholar