Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T16:56:58.389Z Has data issue: false hasContentIssue false

Berthierine and Chamosite in Coal Measures of Japan

Published online by Cambridge University Press:  02 April 2024

Azuma Iljima
Affiliation:
Geological Institute, Faculty of Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113, Japan
Ryo Matsumoto
Affiliation:
Geological Institute, Faculty of Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Berthierine (formerly chamosite) occurs as concretions, lenses, and bands in carbonaceous, kaolinitic shale of freshwater coal-swamp deposits in Paleogene and Upper Triassic coal measures of Japan. Textural relations in thin sections of the Triassic berthierine rocks and a siderite-kaolinite-berthierine-quartz assemblage in Paleogene rocks indicate that the berthierine formed by reaction of siderite with kaolinite. The transformation of siderite and kaolinite to berthierine and quartz occurs progressively under reducing conditions between 65° and 150°C and at burial depths of 2–5 km. Utatsu berthierine is an aluminous, low-Mg variety as compared with berthierine pellets in modern marine and estuarine sediments and in ancient marine ironstones. Fe is the dominant octahedral cation with Fe2+ ≫ Fe3+. The composition of the berthierine varies between different morphological types. Utatsu berthierine transformed to ferrous chamosite when kaolinite in the host shale changed to pyrophyllite. These transformations are estimated to have occurred at ∼160°C and at a burial depth of ∼3 km.

Резюме

Резюме

Бертиерин (раньше хамосит) выступает в виде конкреций, ленсов, и полос в карбонатных, каолинитовых сланцах в свежеводных, углеболотных осадах в палеогенных и выше-триасовых каменноугольных пластах Японии. Текстурные отношения в тонких секциях триасовых бертие-риновых пород и скоплений сидерит-каолинит-бертиерин-кварц в палеогенных породах указывают на то, что бертиерин образовался путем реакции сидерита и каолинита. Трансформирование сидерита и кординита в бертиерин и кварц выступает прогрессивно в восстановленных условиях между 65° и 150°С на глубине погребения 2 до 5 км. Бертиерин из Ютатсу является алюминиевого, низко-Мg сорта по сравнению с бертиериновыми таблетками в современных морских и эстуарных осадках и в древних морских железных рудах. Ре является основным октаэдрическим катионом с Ре2+ ≫ Ре3+. Состав бертиерина различен для разных морфологических типов. Бертиерин из Ютатсу преобразовался в железистый хомосит, когда каолинит в материнском сланце изменился в пирофиллит. Оценивается, что эти преобразования осуществились при температуре 160°С и на глубине погребения порядка 3 км. [Е.С.]

Resümee

Resümee

Berthierit (früher Chamosit) tritt als Konkretionen, Linsen, und Bänder in kohligem, Kaolinithaltigem Schieferton von Süßwasser-Kohlelagerstätten in paläogenen und obertriassischen Kohleschichten von Japan auf. Die Gefügemerkmale in Dünnschliffen der triassischen Berthierit-Gesteine und eine Siderit-Kaolinit-Berthierit-Quarz-Vergesellschaftung in paläogenen Gesteinen deuten darauf bin, daß sich der Berthierit durch die Reaktion von Siderit mit Kaolinit bildete. Die Umwandlung von Siderit und Kaolinit in Berthierit und Quarz findet in zunehmendem Maße unter reduzierenden Bedingungen zwischen 65° und 150°C und bei einer Überlagerung von 2–5 km statt. Der Berthierit von Utatsu ist verglichen mit Berthierit-Pellets in jungen marinen und ästuarinen Sedimenten und alten marinen Eisensteinen eine Al-haltige Varietät mit wenig Mg. In oktaedrischer Koordination tritt vor allem Fe auf, wobei Fe2+ ≫ Fe3+. Die Berthieritzusammensetzung schwankt zwischen den einzelnen morphologischen Typen. Der Utatsu Berthierit wandelte sich in Fe-haltigen Chamosit um, wenn sich der Kaolinit im Muttergestein in Pyrophyllit umwandelte. Es wird angenommen, daß diese Umwandlungen bei ∼160°C und bei einer Überlagerung von ∼3 km stattfanden. [U.W.]

Résumé

Résumé

La benthiérine (autrefois la chamosite) est trouvée en concrétions, en formes lenticulaires, et en bandes dans du shale kaolinitique de dépôts de charbon-marécage d'eau douce dans des mesures de charbon d’âge paléogène et haut triassique du Japon. Des relations texturales dans des sections minces des roches benthiérine triassiques et un assemblage benthiérine-kaolinite-quartz dans les roches paléogènes indiquent que la benthiérine a étè formée par la réaction de sidérite avec la kaolinite. La transformation de sidérite et de kaolinite en benthiérine et quartz se passe progressivement sous des conditions de réduction entre 65° et 150°C et à des profondeurs d'ensevelissement de 2–5 km. La benthiérine Utatsu est une variété alumineuse, à bas Mg comparée aux boulettes de benthiérine dans des sédiments marins et estuarins modernes et dans d'anciennes roches ferreuses marines. Fe est le cation octaèdral dominant avec Fe2+ ≫ Fe3+. La composition de la benthiérine varie entre differents types morphologiques. La benthiérine Utatsu s'est transformée en chamosite ferreuse lorsque la kaolinite dans le shale hôte s'est changée en pyrophylite. On estime que ces transformations se sont passées à 160°C et à une profondeur d'ensevelissement de ∼3 km. [D.J.]

Type
Research Article
Copyright
Copyright © 1982, The Clay Minerals Society

References

Aldinger, H., 1965 Über den Einfluss von Meeresspigel-schwankungen auf Flachwassersedimente in Sehwabischen Jura Tschermarks Mineral. Petrog. Mitt. 10 6168.CrossRefGoogle Scholar
Alling, H. L., 1947 Diagenesis of the Clinton hematite ores of New York Geol. Soc. Amer. Bull. 58 9911018.CrossRefGoogle Scholar
Bayliss, P., 1975 Nomenclature of the trioctahedral chlorites Can. Mineral. 13 178180.Google Scholar
Bence, A. E. and Albee, A. L., 1968 Empirical correction factors for the electron microanalysis of silicates and oxides J. Geol. 76 382403.CrossRefGoogle Scholar
Bostick, N. H., Cashman, S. M., McGulloh, T. H., Waddall, C. T. and Oltz, D. F., 1978 Gradients of vitrinite reflectance and present temperature in the Los Angeles and Ventura Basins, California A Symposium in Geochemistry: Low Température Metamorphism of Kerogen and Clay Minerals Los Angeles Pacific Section S.E.P.M. 6596.Google Scholar
Brindley, G. W., 1951 The crystal structure of some cham-osite minerals Mineral. Mag. 29 502525.Google Scholar
Brindley, G. W. and Youell, R. F., 1953 Ferrous chamosite and ferric chamosite Mineral. Mag. 30 5770.Google Scholar
Castano, J. R. and Sparks, D. M., 1974 Interpretation of vitrinite reflectance measurements in sedimentary rocks and determination of burial history using vitrinite reflectance and authigenic minerals Geol. Soc. Amer. Spec. Pap. 153 3152.Google Scholar
Deer, W. A., Howie, R. A. and Zussman, J., 1962 Rock Forming Minerals, 3. Sheet Silicates New York Wiley.Google Scholar
Deudon, M., 1955 La chamosite orthorhombique du minéral de Sante-Barbe, Conche Grise Bull. Soc. Fr. Minéral. Cris-tallogr. 78 474480.Google Scholar
Drennan, J. A., 1963 An unusual occurrence of chamosite Clay Miner. 5 382391.CrossRefGoogle Scholar
Frey, M., 1970 The step from diagenesis to metamorphism in pelitic rocks during alpine orogenesis Sedimentology 15 261279.CrossRefGoogle Scholar
Frey, M., 1978 Progressive low-grade metamorphism of a black shale formation, central Swiss Alps, with special reference to pyrophyllite and margarite bearing assemblages J. Petrology 19 95135.CrossRefGoogle Scholar
von Gaertner, H. R. and Schellmann, W., 1965 Recente Sed-imente in Kuestenbereich des Halbinsel Kaloum, Guinea Min. Petr. Mitt. 10 349367.Google Scholar
Giresse, P. and Odin, G. S., 1973 Nature minéralogique et origine des glaucomes du plateau continental du Gabon et du Congo Sedimentology 20 457488.CrossRefGoogle Scholar
Greensmith, J. T., 1978 Petrology of the Sedimentary Rocks 6th ed. London George Allen & Unwin.Google Scholar
Hayashi, H., 1980 Pyrophyllite shales from South Africa Earth Resource Inst. Akita Univ. Rep. 45 110123.Google Scholar
Henmi, K., Matsuda, T. and Sudo, T., 1975 The equilibrium boundaries between kaolinite and pyrophyllite Contr. Clay Mineral. Tokyo Taikan-Kinenkai 151156.Google Scholar
Hogarth, D. D., 1972 The Evans-Lou pegmatite, Quebec: a unique yttrium-niobium-bismuth-vanadium mineral assemblage Mineral. Record 3 6977.Google Scholar
Hosterman, J. W., Wood, G. H. Jr. and Bergin, M. J., 1970 Mineralogy of underclays in the Pennsylvania Anthracite region U.S. Geol. Surv. Prof. Pap. 700–C 8997.Google Scholar
Iijima, A., 1972 Latest Cretaceous-Early Tertiary lateritic profile in northern Kitakami Massif, Northern Honshu, Japan J. Fac. Sci. Univ. Tokyo, Sec. II 18 325370.Google Scholar
Iijima, A., 1977 Occurrence of pyrophyllite from Mesozoic strata in Kitakami Massif J. Geol. Soc. Japan 83 244246.CrossRefGoogle Scholar
Iijima, A., 1980 Geology of natural zeolites and zeolitic rocks Pure Appl. Chem. 52 21152130.CrossRefGoogle Scholar
Iijima, A. and Matsumoto, R., 1979 Discovery of chamosite transformed from siderite Abstract 86th Ann. Meeting, Geol. Soc. Japan 193.Google Scholar
James, H. L. (1966) Chemistry of the iron-rich sedimentary rocks: U.S. Geol. Surv. Prof. Pap. 440–W, 60 pp.Google Scholar
Matsumoto, R., 1978 Occurrence and origin of authigenic CaFeMg carbonates and carbonate rocks in the Paleogene coalfield regions in Japan J. Fac. Sci. Univ. Tokyo, Sec. II 19 335367.Google Scholar
Matsumoto, R. and Iijima, A., 1981 Origin and diagenetic evolution of CaMgFe carbonates in some coalfields of Japan Sedimentology 28 239259.CrossRefGoogle Scholar
Nelson, B. W. and Roy, R., 1958 Synthesis of the chlorites and their structural and chemical constitution Amer. Mineral 43 707725.Google Scholar
Porrenga, D. H., 1965 Chamosite in Recent sediments of the Niger and Orinoco Deltas Geol. Mignbouw 44 400403.Google Scholar
Porrenga, D. H. and Bailey, S. W., 1966 Clay minerals in Recent sediments of the Niger Delta Clays and Clay Minerals, Proc. 14th Natl. Conf, Berkeley, California, 1965 New York Pergamon Press 221233.Google Scholar
Porrenga, D. H., 1967 Glauconite and chamosite as depth indicators in marine environment Mar. Geol. 5 495501.CrossRefGoogle Scholar
Rohrlich, V., Price, N. B. and Calvert, S. E., 1969 Chamosite in recent sediments of Loch Etive, Scotland J. Sediment. Petrol. 39 624631.Google Scholar
Ruotsala, A. P., Pfluger, C. E. and Garnett, M., 1964 Iron-rich serpentine and chamosite from Ely, Minnesota Amer. Mineral. 49 9931001.Google Scholar
Schellmann, W., 1966 Secondary formation of chamosite from goethite Z. Erzbergbau Metallhüttenwes. 19 302305.Google Scholar
Schoen, R., 1964 Ciay minerals of the Silurian Clinton iron-stones, New York State J. Sediment. Petrol. 34 855863.Google Scholar
Shimoyama, T. and Iijima, A., 1978 Influence of temperature on coalification of Tertiary coal in Japan Geol. Soc. Japan Mem. 15 205222.Google Scholar
Shirozu, H., 1958 X-ray powder patterns and cell dimensions of some chlorites in Japan, with a note on their interference colors Mineral. J. Japan 2 209223.CrossRefGoogle Scholar
Tanai, T., Iijima, A. and Agatsuma, T., 1978 Late Creta-ceous-Paleogene stratigraphy in the environs of the Iwate clay mine, northern Kitakami Massif, Northeast Honshu J. Geol. Soc. Japan 84 459473.CrossRefGoogle Scholar
Taylor, J. H., 1949 Petrology of the Northampton Sand Iron-stone Formation Great Britain Geol. Survey Mem. .Google Scholar
Velde, B., 1977 Clays and Clay Minerals in Natural and Synthetic Systems Amsterdam Elsevier.Google Scholar
Weaver, C. E. and Pollard, L. D., 1973 The Chemistry of Clay Minerals Amsterdam Elsevier.Google Scholar
Youell, R. F., 1958 Isomorphous replacement in the kaolin group of minerals Nature 181 557558.CrossRefGoogle Scholar