Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T15:25:52.407Z Has data issue: false hasContentIssue false

The behavior of Fe in ground and acid-treated vermiculite from Santa Olalla, Spain

Published online by Cambridge University Press:  01 January 2024

Celia Maqueda*
Affiliation:
Instituto de Recursos Naturales y Agrobiología (CSIC), Apdo 1052, 41080, Sevilla, Spain
Agua Santas Romero
Affiliation:
Instituto de Recursos Naturales y Agrobiología (CSIC), Apdo 1052, 41080, Sevilla, Spain
Esmeralda Morillo
Affiliation:
Instituto de Recursos Naturales y Agrobiología (CSIC), Apdo 1052, 41080, Sevilla, Spain
José L. Pérez-Rodríguez
Affiliation:
Instituto de Ciencia de Materiales de Sevilla (UNSE-CSIC), Americo Vespucio 49, 41092, Sevilla, Spain
Anton Lerf
Affiliation:
Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Walter-Meissner-Strasse 8, Garching D-85748, Germany
Friedrich Ernst Wagner
Affiliation:
Physik-Department EI5, Technische Universität München, Garching D-85748, Germany
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The preparation of porous materials from clay minerals by selective leaching is of interest because it yields residues with large specific surface areas that can be used as adsorbents of contaminants or as catalysts. Grinding produces surface modifications and therefore may significantly influence the leaching behavior. The aim of this paper is to study the effect of grinding and leaching on the structure of the vermiculite from Santa Olalla, Spain, using 57Fe Mössbauer spectroscopy, X-ray diffraction, infrared spectroscopy, and specific surface area (SBET) measurements. The study shows that grinding destroys the long range order of the vermiculite, but leaves the local structure in the environment of the Fe atoms intact, at least up to a grinding time of 10 min. The Mössbauer study shows that there is no Fe3+ in the tetrahedral sheets and that grinding does not lead to a significant oxidation of the structural Fe. Vermiculite ground for 4 min and leached with 1 M HCl solution at 80°C over a 24 h period was decomposed to X-ray amorphous silica with a very large specific surface area (SBET = 720 m2g−1) and with total pore volume of 0.586 cm3 g−1, whereas an unground sample leached with the same acid concentration yielded a specific surface area of only 504 m2 g−1. Most of the Mg2+ and Al3+ are removed from the ground sample after leaching with 1 M HCl, while large percentages of Fe2O3 remain with the X-ray amorphous silica. In unground vermiculite leached with 1 M HCl, a considerable amount of vermiculite remains in the residue. A sample ground for 4 min and treated with 0.25 M HCl also shows the typical vermiculite Mössbauer spectrum with an Fe2+/Fe3+ ratio similar to that of the unground vermiculite. The samples ground for 2 or 4 min and treated with 1 M HCl solution have an orange color and, according to the Mössbauer spectra, only Fe3+ remains. Mössbauer spectra of these samples taken at 4.2 K reveal the presence of akaganéite.

Type
Article
Copyright
Copyright © 2008, The Clay Minerals Society

References

Avilés, M.A., 1998 Síntesis de materiales cerámicos avanzados mediante la reducción carbotérmica de vermiculita Spain Universidad de Sevilla.Google Scholar
Breen, C. Madejová, J. and Komadel, P., 1995 Characterization of moderately acid-treated, size-fractionated montmorillonites using IR and MAS NMR spectroscopy and thermal analysis Journal of Materials Chemistry 5 469474 10.1039/JM9950500469.10.1039/JM9950500469CrossRefGoogle Scholar
Breen, C. Zahoor, F.D. Madejová, J. and Komadel, P., 1997 Characterization and catalytic activity of acid-treated, size-fractionated smectites Journal of Physical Chemistry B 101 53245331 10.1021/jp963287o.10.1021/jp963287oCrossRefGoogle Scholar
Cseri, T. Békássy, S. Figueras, F. Cseke, E. de Menorval, L.C. and Dutartre, R., 1995 Characterization of clay-based K catalysts and their application in Friedel-Crafts alkylation of aromatics Applied Catalysis A 132 141155 10.1016/0926-860X(95)00158-1.10.1016/0926-860X(95)00158-1CrossRefGoogle Scholar
De la Calle, C. Suquet, H. and Pons, C.H., 1996 Evolution of benzylammonium-vermiculite and ornitine-vermiculite intercalates Clays and Clay Minerals 44 6876 10.1346/CCMN.1996.0440106.10.1346/CCMN.1996.0440106CrossRefGoogle Scholar
Farmer, V.C., 1974 The Infrared Spectra of Minerals London Mineral Society 10.1180/mono-4 539 pp.10.1180/mono-4CrossRefGoogle Scholar
Ferrow, E.A., 2002 Experimental weathering of biotite, muscovite and vermiculite: A Mössbauer spectroscopic study Euopean Journal of Mineralogy 14 8595 10.1127/0935-1221/2002/0014-0085.10.1127/0935-1221/02/0014-0085CrossRefGoogle Scholar
Horvath, G. and Kawazoe, K., 1983 Methods for calculation of effective pore size distribution. I. Molecular sieve carbon Journal of Chemical Engineering, Japan 16 420475 10.1252/jcej.16.470.Google Scholar
Kalinowski, B.E. and Schweda, P., 2007 Rates and non-stoichiometry of vermiculite dissolution at 22°C Geoderma 60 367385.Google Scholar
Komadel, P., 2003 Chemically modified smectite Clay Minerals 38 127138 10.1180/0009855033810083.10.1180/0009855033810083CrossRefGoogle Scholar
Kosuge, K. Shimada, K. and Tsunashima, A., 1995 Micropore formation by acid treatment of antigorite Chemistry of Materials 7 22412246 10.1021/cm00060a009.10.1021/cm00060a009CrossRefGoogle Scholar
Madejová, J. Bujdak, J. Janek, M. and Komadel, P., 1998 Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite Spectrochimica Acta 54 13971406 10.1016/S1386-1425(98)00040-7 A.10.1016/S1386-1425(98)00040-7CrossRefGoogle Scholar
Murad, E., 1979 Mössbauer and X-ray data on β-FeOOH (akaganéite) Clay Minerals 14 273283 10.1180/claymin.1979.014.4.04.10.1180/claymin.1979.014.4.04CrossRefGoogle Scholar
Novak, I. and Čičel, B., 1978 Dissolution of smectites in hydrochloric acid: II. Dissolution rate as a function of crystallochemical composition Clays and Clay Minerals 26 341344 10.1346/CCMN.1978.0260504.10.1346/CCMN.1978.0260504CrossRefGoogle Scholar
Okada, K. Shimai, A. Takei, T. Hayashi, S. Yasumori, A. and Mackenzie, K.J.D., 1998 Preparation of microporous silica from metakaolinite by selective leaching method Microporous and Mesoporous Materials 21 289296 10.1016/S1387-1811(98)00015-8.10.1016/S1387-1811(98)00015-8CrossRefGoogle Scholar
Okada, K. Arimitsu, N. Kameshima, Y. Nakajima, A. and Mackenzie, K.J.D., 2005 Preparation of porous silica from chlorite by selective acid leaching Applied Clay Science 30 116124 10.1016/j.clay.2005.04.001.10.1016/j.clay.2005.04.001CrossRefGoogle Scholar
Okada, K. Arimitsu, N. Kameshima, Y. Nakajima, A. and Mackenzie, K.J.D., 2006 Solid acidity of 2:1 type clay minerals activated by selective leaching Applied Clay Science 31 185193 10.1016/j.clay.2005.10.014.10.1016/j.clay.2005.10.014CrossRefGoogle Scholar
Pérez-Maqueda, L.A. Caneo, O.B. Poyato, J. and Pérez-Rodriguez, J.L., 2001 Preparation and characterization of micron and submicron-sized vermiculite Physics and Chemistry of Minerals 28 6166 10.1007/s002690000133.10.1007/s002690000133CrossRefGoogle Scholar
Pérez-Maqueda, L.A. de Jiménez Haro, M.C. Poyato, J. and Pérez-Rodríguez, J.L., 2004 Comparative study of ground and sonicated vermiculite Journal of Materials Science 39 53475351 10.1023/B:JMSC.0000039242.67213.4d.10.1023/B:JMSC.0000039242.67213.4dCrossRefGoogle Scholar
Pérez-Rodríguez, J.L. Pérez-Maqueda, L.A. Poyato, J. and Lerf, A., 2003 Layer modification by mechanical treatment of the Santa Olalla vermiculite Solid State Phenomena 90–91 515520 10.4028/www.scientific.net/SSP.90-91.515.10.4028/www.scientific.net/SSP.90-91.515CrossRefGoogle Scholar
Rhodes, C.N. and Brown, D.B., 1995 Autotransformation and aging of acid-treated montmorillonite catalysts: a solid state 27Al NMR study Journal of the Chemical Society, Faraday Transactions 91 10311035 10.1039/ft9959101031.10.1039/ft9959101031CrossRefGoogle Scholar
Rancourt, D.G. Dong, M.Z. and Lalonde, A.E., 1992 Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas American Mineralogist 77 3443.Google Scholar
Sánchez-Soto, P.J. Ruiz-Conde, A. Avilés, M.A. Justo, A. Pérez-Rodríguez, J.L. and Vicenze, P., 1995 Mechanochemical effects on vermiculite and its influence on the synthesis of nitrogen ceramics Ceramics: Charting the Future Spain Techna Srl..Google Scholar
Shinoda, T. Onaka, M. and Izumi, Y., 1995 Proposed models of mesopore structures in sulfuric acid-treated montmorillonites and K10 Chemistry Letters 7 495496 10.1246/cl.1995.495.10.1246/cl.1995.495CrossRefGoogle Scholar
Suquet, H., 1989 Effect of dry grinding and leaching on the crystal structure of chrysotile Clays and Clay Minerals 37 439445 10.1346/CCMN.1989.0370507.10.1346/CCMN.1989.0370507CrossRefGoogle Scholar
Suquet, H. Chevalier, S. Marcilly, C. and Barthomeuf, D., 1991 Preparation of porous materials by chemical activation of the Llano vermiculite Clays and Minerals 26 4960 10.1180/claymin.1991.026.1.06.10.1180/claymin.1991.026.1.06CrossRefGoogle Scholar
Suquet, H. Franck, R. Lambert, J.F. Elsass, C.M. and Chevalier, S., 1994 Catalytic properties of two pre-cracking matrices: a leached vermiculite and Al-pillared saponite Applied Clay Science 8 349364 10.1016/0169-1317(94)90024-8.10.1016/0169-1317(94)90024-8CrossRefGoogle Scholar
Temuujin, J. Okada, K. Jadamboa, T.S. Mackenzie, K.J.D. and Amarsanoa, J., 2002 Effect of grinding on the preparation of porous material from talc by selective leaching Journal of Materials Science Letters 21 16071609 10.1023/A:1020373617167.10.1023/A:1020373617167CrossRefGoogle Scholar
Temuujin, J. Okada, K. and Mackenzie, K.J.D., 2003 Preparation of porous silica from vermiculite by selective leaching Applied Clay Science 22 187195 10.1016/S0169-1317(02)00158-8.10.1016/S0169-1317(02)00158-8CrossRefGoogle Scholar
Temuujin, J. Okada, K. Jadambae, T.S. Mackenzie, K.J.D. and Amarsanaa, J., 2003 Effect of grinding on the leaching behaviour of pyrophyllite Journal of the European Ceramic Society 23 12771282 10.1016/S0955-2219(02)00297-2.10.1016/S0955-2219(02)00297-2CrossRefGoogle Scholar
Vicente-Rodríguez, M.A. Suarez, M. Bañares-Muñoz, M.A. and González, J.D., 1996 Comparative FT-IR. Study of the removal of octahedral cations and structural modifications during acid treatment of several silicates Spectrochimica Acta A 52 16851694 10.1016/S0584-8539(96)01771-0.10.1016/S0584-8539(96)01771-0CrossRefGoogle Scholar