Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T08:06:23.708Z Has data issue: false hasContentIssue false

Artificial Alteration of Biotite Into a 14 Å Layer Silicate with Hydroxy-Aluminium Interlayers

Published online by Cambridge University Press:  01 July 2024

K. Nagasawa*
Affiliation:
Pedology Department, Rothamsted Experimental Station, Harpenden, Hertfordshire, England
G. Brown
Affiliation:
Pedology Department, Rothamsted Experimental Station, Harpenden, Hertfordshire, England
A. C. D. Newman
Affiliation:
Pedology Department, Rothamsted Experimental Station, Harpenden, Hertfordshire, England
*
*Permanent address: Department of Earth Sciences, Nagoya University, Chikusa, Nagoya, Japan.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Biotite was altered by boiling in 0.2 M A1C13 solution, and the products were examined by X-ray powder and single-crystal diffraction, chemical analysis and thermogravimetry. The altered material is a 14 Å clay mineral with hydroxy-Al interlayers. It has a stacking sequence characteristic of vermiculite and its silicate layers are similar in chemical composition to trioctahedral vermiculite. The results of extracting the interlayer material with sodium citrate solution, X-ray examinations after heating and thermogravimetry show that the interlayer material is composed of Al associated with OH and H2O. The chemistry and kinetics of the alteration reaction and the orientational between the altered and original biotites are also discussed.

Résumé

Résumé

Une biotite a été altérée à l’ébullition dans une solution A1C13 0,2 M et les produits résultants ont été étudiés par diffraction X sur poudre et sur cristal unique, par analyse chimique et thermogravimétrie. Le matériau altéré est un minéral argileux à 14 Å contenant de l’hydroxy-Al interfeuillet. Il a une séquence d’empilement caractéristique de la vermiculite et les feuillets silicatés ont une composition chimique semblable à celle d’une vermiculite trioctaédrique. L’extraction du matériau interfeuillet par une solution de citrate de sodium, les examens aux rayons X après chauffage et la thermogravimétrie, montrent que le matériau interfeuillet est composé d’Al associé à OH et H2O. On discute également de la chimie et de la cinétique de la réaction d’altération et de la relation existant entre l’orientation des biotites altérées et originelles.

Kurzreferat

Kurzreferat

Biotit wurde durch Kochen in 0,2 M AlCl3-Lösungen umgewandelt und die Umwandlungsprodukte mit Hilfe der Pulver- und Einkristallröntgenbeugung sowie der chemischen Analyse und der Thermogravimetrie untersucht. Das umgewandelte Material besteht aus einem 14 Â Tonmineral mit Hydroxo-Al-Zwischenschichten. Es besitzt eine für Vermiculit charakteristische Schichtabfolge und seine Silicatschichten ähneln in der chemischen Zusammensetzung denen des trioktaedrischen Vermiculits. Die Ergebnisse einer Extraktion des Zwischenschichtmaterials mit Na-Citratlösung, die röntgeno-graphische Untersuchung nach Erhitzung und die Thermogravimetrie zeigen, daß das Zwischenschichtmaterial aus einer Verbindung von Al mit OH und H2O besteht. Die Chemie und Kinetik der Umwandlungsreaktion sowie die Beziehungen in der Verteilung der Gitterionen zwischen umgewandelten und ursprünglichen Biotiten werden ebenfalls diskutiert.

Резюме

Резюме

Варкой в растворе 0,2М А1С13 изменили биотит и полученный продукт исследовали методом рентгеновских порошкограмм, дифракцией одного кристалла, химическим анализом и термогравиметрией. Измененный материал является глинистым материалом 14 À с прослойкой гидрокси-Al. Он имеет характеристику последовательной столбчатой укладки вермикулита и его слой силиката подобен по химическому составу триоктаэдральному вермикулиту. Результаты экстрагирования прослоенного материала раствором лимоннокислого натрия, рентгенографических исследований после нагревания и термогравиметрии показывают, что прослоенный материал состоит из AI ассоциированного с ОН и Н20. Также рассматривали химию и кинетику реакции изменения и ориентационное соотношение между измененным и исходным биотитами.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1974

References

Arnold, P. W., (1960) Nature and mode of weathering of soil-potassium reserves J. Sci. Food Agric. 11 285292.CrossRefGoogle Scholar
Aveston, J., (1965) Hydrolysis of the aluminium ion: ultracentrifugation and acidity measurement J. Chem. Soc. 44384443.CrossRefGoogle Scholar
Barshad, I., (1948) Vermiculite and its relation to biotite as revealed by base exchange reactions, X-ray analyses, differential thermal curves, and water content Am. Mineralogist 33 655678.Google Scholar
Brown, B. E. and Bailey, S. W., (1962) Chlorite polyty-pism—I. Regular and semirandom one-layer structures Am. Mineralogist 47 819850.Google Scholar
Brown, G., Edwards, B., Ormerod, E. C. and Weir, A. H., (1972) A simple diffractometer heating stage Clay Minerals 9 407414.CrossRefGoogle Scholar
Coleman, N. T., LeRoux, F. H. and Cady, J. G., (1963) Bio-tite-hydrobiotite-vermiculite in soils Nature 198 409410.CrossRefGoogle Scholar
DeMumbrum, L. E., (1959) Exchangeable potassium levels in vermiculite and K-depleted micas, and implications relative to potassium levels in soils Soil Sci. Soc. Am. Proc. 23 192194.CrossRefGoogle Scholar
DeMumbrum, L. E., (1963) Conversion of mica to vermiculite by potassium removal Soil Sci. 96 275276.CrossRefGoogle Scholar
Dixon, J. B. and Jackson, M. L., (1962) Properties of intergradient chlorite-expansible layer silicates of soils Soil Sci. Soc. Am. Proc. 26 358362.CrossRefGoogle Scholar
Foster, M. D., (1963) Interpretation of the composition of vermiculites and hydrobiotites Clays and Clay Minerals 10 7089.Google Scholar
Greene-Kelly, R. and Weir, A. H., (1956) A silica spiral thermo-balance for studies on the dehydration of clay minerals Clay Minerals Bull. 3 6878.CrossRefGoogle Scholar
Hoda, S. N. and Hood, W. C., (1972) Laboratory alteration of trioctahedral micas Clays and Clay Minerals 20 343358.CrossRefGoogle Scholar
Kato, Y., (1965) Mineralogical study of weathering products of granodiorite at Shinshiro City (III): Weathering of primary minerals (2) Mineralogical characteristics of weathered mineral grains Soil Sci. Plant Nutr. (Tokvo) 11 3040.CrossRefGoogle Scholar
Kato, Y., (1965) Ibid. (V): Trioctahedral aluminum-vermi-culite as a weathering product of biotite Soil Sci. Plant Nutr. (Tokyo) 11 114122.CrossRefGoogle Scholar
Mathieson, A. Mc L. and Walker, G. F., (1954) Crystal structure of magnesium-vermiculite Am. Mineralogist 39 231255.Google Scholar
Mortland, M. M., (1958) Kinetics of potassium release from biotite Soil Sci. Soc. Am. Proc. 22 503508.CrossRefGoogle Scholar
Newman, A. C. D., (1967) Changes in phlogopites during their artificial alteration Clay Minerals 7 215227.CrossRefGoogle Scholar
Newman, A. C. D., (1970) Cation exchange properties of micas-II. Hysteresis and irreversibility during potassium exchange Clay Minerals 8 267272.CrossRefGoogle Scholar
Newman, A. C. D., (1970) The synergetic effect of hydrogen ions on the cation exchange of potassium in micas Clay Minerals 8 361373.CrossRefGoogle Scholar
Newman, A. C. D. and Brown, G., (1966) Chemical changes during the alteration of micas Clay Minerals 6 297310.CrossRefGoogle Scholar
Norrish, K., (1972) Factors in the weathering of mica to vermiculite Intern. Clay Conf., Madrid, Preprints 2 83101.Google Scholar
Pruden, G. and King, H. G. C., (1969) A scheme of semi-micro analysis for the major elements in clay minerals based on modifications to conventional methods of silicate analysis Clay Minerals 8 113.CrossRefGoogle Scholar
Rausell-Colom, J., Sweatman, T. R., Wells, C. B., Norrish, K., Hallsworth, H. G. and Crawford, D. V., (1965) Studies in the artificial weathering of mica Experimental Pedology, Proc. 11th School Agric. Sci., Nottingham London Butterworth 4072.Google Scholar
Reed, M. G. and Scott, A. D., (1962) Kinetics of potassium release from biotite and muscovite in sodium tetraphenyl-boron solution Soil Sci. Soc. Am. Proc. 26 437440.CrossRefGoogle Scholar
Rich, C. I., (1968) Hydroxy interlayers in expansible layer silicates Clays and Clay Minerals 16 1530.CrossRefGoogle Scholar
Robert, M., (1971) Étude expérimentale de l’évolution des micas (Biotites)—II. Les autres possibilités d’évolution des micas et leur place par rapport à la vermiculitisation Ann. Agron. 22 155181.Google Scholar
Ross, G. J., (1967) Kinetics of acid dissolution of an ortho-chlorite minerai Canad. J. Chem. 45 30313034.CrossRefGoogle Scholar
Scott, A. D., Hunziker, R. R. and Hanway, J. J., (1960) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron—I. Preliminary experiments Soil Sci. Soc. Am. Proc. 24 191194.CrossRefGoogle Scholar
Scott, A. D. and Reed, M. G., (1962) Ibid—II. Biotite Soil Sci. Soc. Am. Proc. 26 4145.CrossRefGoogle Scholar
Scott, A. D. and Smith, S. J., (1966) Susceptibility of inter-layer potassium in micas to exchange with sodium Clays and Clay Minerals 14 6981.CrossRefGoogle Scholar
Scott, A. D. and Smith, S. J., (1967) Visible changes in macro mica particles that occur with potassium depletion Clays and Clay Minerals 15 357373.CrossRefGoogle Scholar
Shirozu, H. and Bailey, S. W., (1966) Crystal structure of a two-layer Mg-vermiculite Am. Mineralogist 51 11241143.Google Scholar
Smith Aitken, W. W., (1965) An occurrence of phlogopite and its transformation to vermiculite by weathering Mineralog. Mag. 35 151164.Google Scholar
Tamura, T., (1958) Identification of clay minerals from acid soils J. Soil Sci. 9 141147.CrossRefGoogle Scholar
Treadwell, W. D. and Lien, O. T., (1931) Über ein basisches Aluminiumchlorid Helv. Chim. Acta 14 473481.CrossRefGoogle Scholar
Tsuzuki, Y., Nagasawa, K. and Isobe, K., (1968) Weathered biotite from Matsusaka, central Japan Mineralog. J. (Japan) 5 365382.CrossRefGoogle Scholar
Walker, G. F., (1949) The decomposition of biotite in the soil Mineralog. Mag. 28 693703.Google Scholar
Walker, G. F., (1950) Trioctahedral minerals in the soil-clays of north-east Scotland Mineralog. Mag. 29 7284.Google Scholar
Wells, C. B. and Norrish, K., (1968) Accelerated rates of release of interlayer potassium from micas 9th Intern. Congr. Soil Sci. Trans. 2 683694.Google Scholar
Wilson, M. J., (1966) The weathering of biotite in some Aberdeenshire soils Mineralog. Mag. 35 10801093.Google Scholar
Wilson, M. J., (1970) A study of weathering in a soil derived from a biotite-hornblende rock—I. Weathering of biotite Clay Minerals 8 291303.CrossRefGoogle Scholar