Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T23:09:39.441Z Has data issue: false hasContentIssue false

Applying X-Ray Geothermometer Diffraction to a Chlorite

Published online by Cambridge University Press:  28 February 2024

Stefano Battaglia*
Affiliation:
International Institute for Geothermal Research C.N.R., 2 Piazza Solferino, 56126 Pisa, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new method is proposed for applying the chlorite geothermometer using X-ray diffraction (XRD) data. A linear correlation has been found between the (001) basal spacing of chlorite and its “crystallization” temperature. The basal spacing values were corrected for an increase of Al(IV) with Fe enrichment (Fe/Fe + Mg), when the Fe(II) value of chlorite is >2.6 in the formula unit. The regression coefficient of the best fit is r = 0.95. Only 2 Bragg lines need to be measured for application of the proposed technique: the (001) and (060) X-ray spacing. The proposed method is applied to 19 chlorite samples from 4 different geothermal fields. The temperatures of chlorite formation obtained with the present method and those calculated by the expressions formulated by Cathelineau (1988) and Kranidiotis and MacLean (1987) are presented. The method's validity was also tested on geothermal chlorites from the literature, and the results show good agreement with previous experimental trials.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Abbate, E. Passerini, P. and Zan, L., 1995 trike-slip faults in a rift area: A transect in the Afar Triangle, East Africa Tectonophysics 241 6797 10.1016/0040-1951(94)00136-W.CrossRefGoogle Scholar
Alt, J.C. Honnorez, J. Laverne, C. and Emmermann, R., 1986 Hydrothermal alteration of a 1 Km section through the upper oceanic crust, deep sea drilling project hole 504B: Mineralogy chemistry, and evolution of seawater-basalt interactions J Geophys Res 91 10 309335.Google Scholar
Aquater., 1994 Tendaho Geothermal Project: Well TD-3: S Lorenzo in Campo (Italy) Government of the Republic of Italy Ministry of Foreign Affairs and Government of Ethiopia Ministry of Mines and Energy .Google Scholar
Aquater, 1994 Tendaho Geothermal Project: Well TD-1, TD-2. S Lorenzo in Campo (Italy) Government of the Republic of Italy Ministry of Foreign Affairs and Government of Ethiopia Ministry of Mines and Energy.Google Scholar
Aspinall, W.P. Michael, M.O. and Tomblin, J.E., 1976 Evidence for fluid bodies beneath the Sulphur Springs geothermal region, St. Lucia, West Indies Geophys Res Lett 3 8790 10.1029/GL003i002p00087.CrossRefGoogle Scholar
Bailey, S.W., 1972 Determination of chlorite compositions by X-ray spacings and intensities Clays Clay Miner 20 381388 10.1346/CCMN.1972.0200606.CrossRefGoogle Scholar
Baldi, P. Bertini, G. Ceccarelli, A. Dini, I. Ridolfi, A. and Rocchi, G., 1995 Geothermal research in the Monteverdi Zone (western border of the Larderello Geothermal Field) Proc World Geothermal Congress; Florence, Italy 2 693696.Google Scholar
Battaglia, S. Gianelli, G. Rossi, R. and Cavarretta, G., 1991 The sulphur springs geothermal field, St. Lucia, Lesser Antilles: Hydrothermal mineralogy of wells SL-1 and SL-2 J South Am Earth Sciences 4 112 10.1016/0895-9811(91)90014-C.CrossRefGoogle Scholar
Bence, A.E. and Albee, A.L., 1968 Empirical correction factors for the electron microanalysis of silicate and oxides J Geol 76 382403 10.1086/627339.CrossRefGoogle Scholar
Bettison, L.A. and Schiffman, P., 1988 Compositional and structural variations of phyllosilicates from the Point Sal ophiolite, California Am Mineral 73 6276.Google Scholar
Bettison-Varga, L.A. and MacKinnon, I.D.R., 1989 Comparison of microanalytical techniques used in the characterization of mixed layer chlorite/smectite from the Point Sal ophiolite Clay Miner Soc 26th Annu Meet .Google Scholar
Bevins, R.E. Robinson, D. and Rowbotham, G., 1991 Compositional variations in mafic phyllosilicates from regional low-grade metabasites and application of the chlorite geothermometer J Metamorphic Geol 9 711721 10.1111/j.1525-1314.1991.tb00560.x.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G., 1961 Kaolin, serpentine and kindred minerals The X-ray identification and crystal structures of clay minerals London Mineral Soc 51131.Google Scholar
Cathelineau, M., 1988 Cation site occupancy in chlorites and illites as a function of temperature Clay Miner 23 471485 10.1180/claymin.1988.023.4.13.CrossRefGoogle Scholar
Cathelineau, M. and Nieva, D., 1985 A chlorite solid solution geothermometer The Los Azufres (Mexico) geothermal system Contrib Mineral Petrol 91 235244 10.1007/BF00413350.CrossRefGoogle Scholar
De Caritat, P. Hutcheon, I. and Walshe, J.L., 1993 Chlorite geother-mometry: A review Clays Clay Miner 41 2 219239 10.1346/CCMN.1993.0410210.CrossRefGoogle Scholar
Deer, W.A. Howie, R.A. and Zussman, J., 1962 Rock forming minerals. 3. Sheet silicates New York J Wiley 270.Google Scholar
Di Paola, G.M., 1972 The Ethiopian Rift Valley (between 7°00’ and 8°40’ lat. North) Bull Volcanol 36 4 517559 10.1007/BF02599823.CrossRefGoogle Scholar
Electroconsult ELC., 1986 Exploitation of Langano-Aluto geothermal resources .Google Scholar
Foster, M.D., 1962 Interpretation of the composition and a classification of the chlorites US Geol Surv Prof Pap 414A 133.Google Scholar
Gianelli, G. and Bertini, G., 1993 Natural hydraulic fracturing in the Larderello Geothermal Field: Evidence from Well MV5A Boll Soc Geol It 112 507512.Google Scholar
Gianelli, G. and Teklemariam, M., 1993 Water-rock interaction processes in the Aluto-Langano geothermal field (Ethiopia) J Volcan Geoth Res 56 429445 10.1016/0377-0273(93)90007-E.CrossRefGoogle Scholar
Van de Helmold, K.P. Kamp, P., McDonald, D. and Surdam, R., 1984 Diagenetic mineralogy and controls on albitization and laumontite formation in Paleogene arkoses, Santa Ynez mountains, California Clastic digenesis. Am Assoc Petrol Geol 239276.CrossRefGoogle Scholar
Hey, M.H., 1954 A new review of the chlorites Mineral Mag 30 277292.Google Scholar
Hochstein, M.P. Caldwell, G. and Kifle, K., 1983 Minimum age of the Alutogeothermal system .Google Scholar
Inoue, A. Utada, M. Nagata, H. and Watanabe, T., 1984 Conversion of trioctahetral smectite to interstratified chlorite/smectite in Pliocene acid pyroclastic sediments of the Ohyn district, Akita Prefecture, Japan Clay Sci 6 103116.Google Scholar
Jahren, J.S. and Aagaard, P., 1989 Compositional variations in diagenetic chiorites and illites, and relationships with formation-water chemistry Clay Miner 24 157170 10.1180/claymin.1989.024.2.04.CrossRefGoogle Scholar
Jowett, E.C., 1991 Fitting iron and magnesium into the hydro-thermal chlorite geothermometer GAC/MAC/SEG Joint Annu Meet Toronto .Google Scholar
Kepezhinskas, K.B., 1965 Composition of chiorites as determined from their physical properties Dokl Akad Nauk SSSR, Earth Sci Sect 164 126129.Google Scholar
Kranidiotis, P. and MacLean, W.H., 1987 Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Ma-tagami, Quebec Econ Geol 82 18981911 10.2113/gsecongeo.82.7.1898.CrossRefGoogle Scholar
Laird, J., 1988 Chiorites: Metamorphic petrology Hydrous phyllosilicates. Rev Mineral 19 405454 10.1515/9781501508998-016.CrossRefGoogle Scholar
Lloyd, E.F., 1977 Geology factors influencing geothermal exploration in Langano region, Ethiopia .Google Scholar
MacDowell, S.D. and Elders, W.A., 1980 Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA Contrib Mineral Petrol 74 293310 10.1007/BF00371699.CrossRefGoogle Scholar
Mickledust, R.L. Fiori, C.E. and Heinrich, K.F.S., 1978 A compact procedure for quantitative energy dispersive electron probe X-ray analysis US Natl Bur Stand Tech Note .Google Scholar
Nemecz, E., 1981 Clay minerals, Akademiai Kiado, Budapest, Hungary .Google Scholar
Nieto, F., 1997 Chemical composition of metapelitic chiorites: X-ray diffraction and optical property approach Eur J Mineral 9 829841 10.1127/ejm/9/4/0829.CrossRefGoogle Scholar
Rausell-Colom, J.A. Wiewiora, A. and Matesanz, E., 1991 Relation between composition and d 001 for chlorite Am Mineral 76 13731379.Google Scholar
Reynolds, R.C., 1988 Mixed-layer chlorite minerals Hydrous phyllosilicates. Rev Mineral 19 601629 10.1515/9781501508998-020.CrossRefGoogle Scholar
Roberson, H.E., 1989 Corrensite in hydrofhermally altered oceanic crustal rocks Clay Miner Soc 26th Annu Meet (abstract) 59.Google Scholar
Rose, A.W. and Burt, D.M., 1979 Geochemistry of hydrothermal ore deposits (hydrothermal alteration) New York J Wiley.Google Scholar
Shau, Y.H. Peacor, D.R. and Essene, E.J., 1990 Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies Contrib Mineral Petrol 105 123142 10.1007/BF00678980.CrossRefGoogle Scholar
Schiffman, P. and Fridleiifsson, G.O., 1991 The smectite-chlorite transition in drillhole NJ-15, Nesjavellir geothermal field, Iceland: XRD, BSE and electron microprobe investigations J Metamorphic Geol 9 679696 10.1111/j.1525-1314.1991.tb00558.x.CrossRefGoogle Scholar
Shirozu, H., 1958 X-ray powder patterns and cell dimensions of some chiorites in Japan, with a note on their interference colors Mineral J (Japan) 2 209223 10.2465/minerj1953.2.209.CrossRefGoogle Scholar
Shirozu, H., 1978 Developments in sedimentology (Chlorite minerals) 26 243264 10.1016/S0070-4571(08)70688-5.CrossRefGoogle Scholar
Steiner, A., 1977 The Wairakei geothermal area, North Island, New Zealand: Its subsurface geology and hydrothermal rock alteration Bull New Zealand Geol Surv 90 136.Google Scholar
Teklemariam, M. Battaglia, S. Gianelli, G. Ruggieri, G. and Torres-Ruiz, G., 1993 Changes in temperature and salinity in a zone of lateral flow in the Aluto-Langano geothermal field, Ethiopia: Evidence from clay minerals and fluid inclusions Fenoll Hach-Ali, Current research in geology applied to ore deposit 775778.Google Scholar
Teklemariam, M. Battaglia, S. Gianelli, G. and Ruggieri, G., 1996 Hydrothermal alteration in the Aluto-Langano geothermal field, Ethiopia Geothermics 25 6 679702 10.1016/S0375-6505(96)00019-3.CrossRefGoogle Scholar
Von Engelhardt, W., 1942 Die Strukturen von Thuringit, Bavalit und Chamosit und ihre Stellung in der Chloritgruppe Kristallogr 104 142159.Google Scholar
Westercamp, D. and Tomblin, J., 1980 Le volcanisme rècent et les éruptions historiques dans la partie centrale de l’arc insulaire des Petites Antilles Bull Bur Rech Geol Min, Ser. 2 3/4 293319.Google Scholar
Wohletz, K. Heiken, G. Ander, M. Goff, F. Vautaz, F.D. and Wadge, G., 1986 The Qualibou caldera, St. Lucia, West Indies J Volcanol Geotherm Res 27 77115 10.1016/0377-0273(86)90081-8.CrossRefGoogle Scholar