Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T01:18:56.288Z Has data issue: false hasContentIssue false

Application of chemical geothermometry to low-temperature trioctahedral chlorites

Published online by Cambridge University Press:  01 January 2024

Atsuyuki Inoue*
Affiliation:
Laboratoire Hydr’ASA, UMR 6532 CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Alain Meunier
Affiliation:
Laboratoire Hydr’ASA, UMR 6532 CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Patricia Patrier-Mas
Affiliation:
Laboratoire Hydr’ASA, UMR 6532 CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Cecile Rigault
Affiliation:
Laboratoire Hydr’ASA, UMR 6532 CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Daniel Beaufort
Affiliation:
Laboratoire Hydr’ASA, UMR 6532 CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Philippe Vieillard
Affiliation:
Laboratoire Hydr’ASA, UMR 6532 CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
*
Permanent address: Department of Earth Sciences, Chiba University, Chiba 263-8522, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Low-temperature chlorites formed in diagenetic to low-grade metamorphic environments generally have greater Si contents and larger numbers of octahedral vacancies, and smaller Fe+Mg contents than higher-grade metamorphic chlorites. The compositional variations are characterized approximately by four end-member components: Al-free trioctahedral chlorite, chamosite, corundophilite, and sudoite. The solid solution is considered to be a random mix of cations and vacancies in the octahedral sites. Using the compositions of chlorites from Niger, Rouez, and Saint Martin diagenetic-hydrothermal series, a new, more convenient geothermometer, applicable to low-T chlorites is proposed and comparison made with geothermometers proposed previously. The chlorites studied contain appreciable amounts of Fe(III) (>14% of the total Fe), determined by Mössbauer spectroscopy. The calculations under which all Fe was regarded as ferrous gave considerable overestimates for the formation temperature, irrespective of the geothermometer used. This problem was reduced by taking into account the presence of Fe(III) in the octahedral sites. The geothermometer from this study gave more reasonable estimates than the geothermometers proposed by Walshe (1986) and Vidal et al. (2001), particularly in the case of the Niger chlorites which crystallized in the lowest-temperature conditions. The ordered-site substitution model of solid solution developed by Vidal et al. (2001) predicted satisfactorily the formation temperature of the Rouez chlorites and of some of the Saint Martin chlorites, suggesting that the chlorite compositions are controlled by the exchange at low-T conditions while they are controlled by Tschermak exchange at higher temperatures. The decreasing number of vacancies with temperature are poorer in Fe-rich than in Fe-poor chlorites. Furthermore, the ordered-site occupation of cations and vacancies in trioctahedral chlorite occurs concomitantly with the compositional changes ruled by increasing temperature conditions.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Bailey, S.W. and Bailey, S.W., 1988 Chlorites: Structures and crystal chemistry Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C. Mineralogical Society of America 347403 10.1515/9781501508998-015.CrossRefGoogle Scholar
Baker, J. and Holland, T.J.B., 1996 Experimental reversals of chloritecompositions in divariant MgO-Al2O3-SiO2-H2O assemblages: implications for order-disorder in chlorites American Mineralogist 81 676684 10.2138/am-1996-5-615.CrossRefGoogle Scholar
Beaufort, D., 1986 Defenition des equilibres chlorite-mica blanc dans la metamorphisme et la metasomatisme: etude des metasediments encaisant l’amas sulfure de Rouez France Universite de Poitiers.Google Scholar
Beaufort, D., 1987 Interstratified chlorite/smectite (‘meta-morphic vermiculite’) in the Upper Precambrian greywackes of Rouez, Sarthe, France Proceedings of the International Clay Conference, Denver, 1985 5965.CrossRefGoogle Scholar
Beaufort, D. Westercamp, D. Legendre, O. and Meunier, A., 1990 The fossil hydrothermal system of Saint Martin: (1) Geology and lateral distribution of alterations Journal of Volcanology and Geothermal Research 40 219243 10.1016/0377-0273(90)90122-V.CrossRefGoogle Scholar
Beaufort, D. Patrier, P. Meunier, A. and Ottaviani, M.M., 1992 Chemical variations in assemblages including epidote and/or chloritein the fossil hydrothermal system of Saint Martin (Lesser Antilles) Journal of Volcanology and Geothermal Research 51 95114 10.1016/0377-0273(92)90062-I.CrossRefGoogle Scholar
Berman, R.G., 1988 Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2 Journal of Petrology 29 445522 10.1093/petrology/29.2.445.CrossRefGoogle Scholar
Cathelineau, M., 1988 Cation site occupancy in chlorites and illites as a function of temperature Clay Minerals 23 471485 10.1180/claymin.1988.023.4.13.CrossRefGoogle Scholar
Curtis, C.D. Hughes, C.R. Whiteman, J.A. and Whittle, C.K., 1985 Compositional variation within some sedimentary chlorites and some comments on their origin Mineralogical Magazine 49 375386 10.1180/minmag.1985.049.352.08.CrossRefGoogle Scholar
De Caritat, P. Hutcheon, I. and Walshe, J.L., 1993 Chlorite geothermometry: A review Clays and Clay Minerals 41 219239 10.1346/CCMN.1993.0410210.CrossRefGoogle Scholar
Foster, M.D., 1962 Interpretation of the composition and a classification of the chlorites U.S. Geological Survey Professional Paper 33 pp.CrossRefGoogle Scholar
Hayes, J.B., 1970 Polytypism of chlorite in sedimentary rocks Clays and Clay Minerals 18 285306 10.1346/CCMN.1970.0180507.CrossRefGoogle Scholar
Helgeson, H.C., Delany, J.M., Nesbitt, H.W., and Bird, D.K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. American Journal of Science, 278-A, 229 pp.Google Scholar
Hillier, S., 1994 Pore-lining chlorites in siliciclastic reservoir sandstones: electron microprobe, SEM and XRD data, and implications for their origin Clay Minerals 29 665679 10.1180/claymin.1994.029.4.20.CrossRefGoogle Scholar
Hillier, S. and Velde, B., 1991 Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites Clay Minerals 26 149168 10.1180/claymin.1991.026.2.01.CrossRefGoogle Scholar
Hillier, S. and Velde, B., 1992 Chlorite interstratified with a 7 Å mineral: An example from offshore Norway and possible implications for the interpretation of the composition of diagenetic chlorites Clay Minerals 27 475486 10.1180/claymin.1992.027.4.07.CrossRefGoogle Scholar
Holland, T.J.B. and Powell, R., 1998 An internally consistent thermodynamic data set for phases of petrological interest Journal of Metamorphic Geology 16 309343 10.1111/j.1525-1314.1998.00140.x.CrossRefGoogle Scholar
Holland, T.J.B. Baker, J. and Powell, R., 1998 Mixing properties and activity-composition relationships of chlorites in the system MgO-FeO-Al2O3-SiO2-H2O European Journal of Mineralogy 10 395406 10.1127/ejm/10/3/0395.CrossRefGoogle Scholar
Hutcheon, I. (1990) Clay-carbonate reactions in the Venture area, Scotia Shelf, Nova Scotia, Canada. Pp. 199212 in: Fluid-Mineral Interactions: A Tribute to H.P. Eugster (Spencer, R.J. and Chou, I.-M., editors). Geochemical Society Special Publication 2.Google Scholar
Laird, J. and Bailey, S.W., 1988 Chlorites: Metamorphic petrology Hydrous Phyllosilicates (Exclusive of micas) Washington, D.C. Mineralogical Society of America 405453 10.1515/9781501508998-016.CrossRefGoogle Scholar
Meyer, C. Hemley, J.J. and Barnes, H.L., 1967 Wall rock alteration Geochemistry of Hydrothermal Ore Deposits Rinehart and Winston, New York Holt 166235.Google Scholar
Newman, A.C.D. Brown, G. and Newman, A.C.D., 1987 The chemical constitution of clays Chemistry of Clays and Clay Minerals London Mineralogical Society 1128.Google Scholar
Parra, T. Vidal, O. and Theye, T., 2005 Experimental data on the Tschermak substitution in Fe-chlorite American Mineralogist 90 359370 10.2138/am.2005.1556.CrossRefGoogle Scholar
Patrier, P. Beaufort, D. Touchard, G. and Fouillac, A.M., 1990 Crystal side of epidotes: A potentially exploitable geothermometer in geothermal fields? Geology 18 11261129 10.1130/0091-7613(1990)018<1126:CSOEAP>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Patrier, P. Beaufort, D. Meunier, A. Eymery, J.-P. and Petit, S., 1991 Determination of the non-equilibrium ordering state in epidote from the ancient geothermal field of Saint Martin: Application of Mössbauer spectroscopy American Mineralogist 76 602610.Google Scholar
Powell, R., 1978 Equilibrium Thermodynamics in Petrology: An Introduction London Harper & Row 284 pp.Google Scholar
Saccocia, P.J. and Seyfried, W., 1994 The solubility of chloritesolid solutions in 3.2 wt.% NaCl fluids from 300–400°C, 500 bars Geochimica et Cosmochimica Acta 58 567585 10.1016/0016-7037(94)90489-8.CrossRefGoogle Scholar
Vidal, O. Goffe, B. and Theye, T., 1992 Experimental study of the stability of sudoite and magnesiocarpholite and calculation of a new petrogenetic grid for the system FeO-MgO-Al2O3-SiO2-H2O Journal of Metamorphic Geology 10 603614 10.1111/j.1525-1314.1992.tb00109.x.CrossRefGoogle Scholar
Vidal, O. Goffe, B. Parra, T. and Bousquet, R., 1999 Calibration and testing of an empirical chloritoid-chlorite Mg-Fe thermometer and thermodynamic data for daphnite Journal of Metamorphic Geology 17 2539 10.1046/j.1525-1314.1999.00174.x.CrossRefGoogle Scholar
Vidal, O. Parra, T. and Trotet, F., 2001 A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the100° to 600°C, 1 to 25 kb range American Journal of Science 301 557592 10.2475/ajs.301.6.557.CrossRefGoogle Scholar
Vidal, O. Parra, T. and Vieillard, P., 2005 Thermodynamic properties of the Tschermak solid solution in Fe-chlorite; Application to natural examples and possible role of oxidation American Mineralogist 90 347358 10.2138/am.2005.1554.CrossRefGoogle Scholar
Vidal, O. De Andrade, V. Lewin, E. Munoz, M. Parra, T. and Pascarell, S., 2006 P-T-deformation-Fe(III)/Fe(II) mapping at the thin section scale and comparison with XANES mapping: application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan) Journal of Metamorphic Geology 24 669683 10.1111/j.1525-1314.2006.00661.x.CrossRefGoogle Scholar
Walker, J.R., 1993 Chlorite polytype geothermometry Clays and Clay Minerals 41 260267 10.1346/CCMN.1993.0410212.CrossRefGoogle Scholar
Walshe, J.L., 1986 A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems Economic Geology 81 681703 10.2113/gsecongeo.81.3.681.CrossRefGoogle Scholar
Walshe, J.L. and Solomon, M., 1981 An investigation into the environment of formation of the volcanic-hosted Mt. Lyell copper deposits using geology, mineralogy, stable isotopes, and a six-component chlorite solid solution model Economic Geology 76 246284 10.2113/gsecongeo.76.2.246.CrossRefGoogle Scholar
Wiewióra, A. and Weiss, Z., 1990 Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II The chlorite group Clay Minerals 25 8392 10.1180/claymin.1990.025.1.09.CrossRefGoogle Scholar
Xu, H. and Veblen, D.R., 1996 Interstratification and other reaction microstructures in the chlorite-berthierine series Contributions to Mineralogy and Petrology 124 291301 10.1007/s004100050192.CrossRefGoogle Scholar
Zane, A. Sassi, R. and Guidotti, C.V., 1998 New data on metamorphic chlorite as a petrogenetic indicator mineral, with special regard to greenschist-facies rocks The Canadian Mineralogist 36 713726.Google Scholar