Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T07:51:04.621Z Has data issue: false hasContentIssue false

Analyses of Palygorskites and Associated Clays from the Jbel Rhassoul (Morocco): Chemical Characteristics and Origin of Formation

Published online by Cambridge University Press:  28 February 2024

Azzedine Chahi
Affiliation:
Centre de Géochimie de la Surface, Institut de Géologie, 1 rue Blessig, 67084 Strasbourg Cedex, France
Joelle Duplay
Affiliation:
Centre de Géochimie de la Surface, Institut de Géologie, 1 rue Blessig, 67084 Strasbourg Cedex, France
Jacques Lucas
Affiliation:
Centre de Géochimie de la Surface, Institut de Géologie, 1 rue Blessig, 67084 Strasbourg Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The “Formation Rouge” from the Jbel Rhassoul in Morocco is composed of detrital sediments which have a lacustrine origin. The clays contained in the less than 2 µm fraction of the sediments are detrital phengites and illites, illite/smectites or smectites, and palygorskite. Due to the presence of well preserved long fibers, the palygorskite could not have been transported. They are authigenic and must have formed directly by precipitation from solutions rich in Mg and Al. The detrital illites are impoverished in K and tetrahedral Al. The illite/smectites or smectites, on the contrary, are K-rich but have a low tetrahedral charge. They are also richer in Mg and Fe and have a different crystal size, composition, and crystallinity from the illites. They most probably formed by crystallization, similar to the palygorskites, directly from the solution. The Al could have been provided by the detrital illite, which may have been unstable in an alkaline environment and released K and Al to the solutions.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

References

Bonhomme, M., Thuizat, R., Pinault, Y., Clauer, N., Wendling, A., and Winckler, F., (1975) Méthode de datation potassium-argon. Appareillage et technique: Notes Techniques de l’Institut de Géologie, 53 pp.Google Scholar
Chahi, A., (1988) Recherche de quelques méthodes de purification des minéraux argileux. Etude cristallochimique de quelques échantillons du Jbel Rhassoul: Mém. D.E.A. Univ. Strasbourg, 30 pp.Google Scholar
Chahi, A., (1992) Comparaison des minéraux argileux des formations lacustres du Jbel Rhassoul et des phosphorites marines des Ganntour au Maroc. Genèse des minéraux argileux magnésiens: Thèse de doctorat, Université Louis Pasteur, Strasbourg, 211 pp.Google Scholar
Chahi, A., Risacher, F., Ais, M., Duringer, P., Karaka, Y. K. and Maest, A. S., 1992 Diagenetic stevensite after dolomite in lacustrine deposit of the Jbel Rhassoul, Morocco Proc. Intern. Symposium on Water-Rock Interaction Rotterdam and Brookfield A. A. Balkema 627629.Google Scholar
Chahi, A. and Weber, F., 1991 The use of cation exchange resins (amberlite IRC-50H) for dispersion and purification of clay minerals associated with carbonates, sulfates and phosphates VI EUG Symposium, Strasbourg, Terra (Abstract) 3 471.Google Scholar
Chahi, A., Weber, F., and Prévôt, L., (1989) Separation of clay minerals from the phosphorites of Ganntour (Morocco) for a tentative precise determination: Proc. Int. Clay Conf., Strasbourg (Abstracts), Farmer, V. C., and Tardy, Y., eds., Strasbourg, 75.Google Scholar
Cliff, G. and Lorimer, G. W., 1975 The quantitative analysis of thin specimens J. Microsc. 103 203207 10.1111/j.1365-2818.1975.tb03895.x.CrossRefGoogle Scholar
Duplay, J., (1988) Géochimie des argiles et géothermométrie des populations monominérales de particules: Thèse de doctoral, Univ. Strasbourg, 222 pp.Google Scholar
Estéoule-Choux, J., Singer, A. and Galan, E., 1984 Palygorskite in the Tertiary deposits of the Armorican Massif Palygorskite-Sepiolite: Occurrences, Genesis and Uses Amsterdam Elsevier 7585.Google Scholar
Fritz, B., (1981) Etude thermodynamique et modélisation des réactions hydrothermales et diagénétiques: Sciences Géologiques, Mém. 65, Institut de Géologie-Université Louis Pasteur, Strasbourg, 197 pp.Google Scholar
Galan, E., Castillo, A., Singer, A. and Galan, E., 1984 Sepiolite-palygorskite in Spanish Tertiary Basins: Genetical patterns in continental environments Palygorskite-Sepiolite: Occurrences, Genesis and Uses Amsterdam Elsevier 87124.Google Scholar
Hasnuddin Siddiqui, N. K., Singer, A. and Galan, E., 1984 Occurrence of palygorskite in the Deccan Trap formation in India Palygorskite-Sepiolite: Occurrences, Genesis and Uses Amsterdam Elsevier 243250.Google Scholar
Isphording, W. C., (1984) The clays from Yucatan, Mexico: A contrast in genesis: in Palygorskite-Sepiolite: Occurrences, Genesis and Uses, Singer, A., and Galan, E., eds., Developments in Sedimentology 37, Elsevier, 5973.Google Scholar
Kôster, H. M., van Olphen, H. and Veniale, E., 1982 The crystal structure of 2:1 layer silicates Proc. Int. Clay Conf. Bologna-Pavia Amsterdam Elsevier 4171.Google Scholar
Lucas, J., and Prévôt, L., (1976) Etude géologique du gisement de rhassoul de Tamdalfelt (Ksabi): Rapport Interne, Inst. Géol, Strasbourg, 16 pp.Google Scholar
Minato, H., Imai, N. and Otsuka, R., 1969 Palygorskite from the Ogano mine, Tochigi Prefecture, Central Japan J. Japanese Assoc. Miner. Petrol. Evon. Geol. 61 125139 10.2465/ganko1941.61.125.CrossRefGoogle Scholar
Moberg, J. P., (1989) Development and constituent composition of the clay fraction in Danish soils—A review: Int. Clay Conf., Strasbourg (Abstract), Farmer, V. C., and Tardy, Y., eds., Strasbourg, 264.Google Scholar
Paquet, H., 1983 Stability, instability and significance of attapulgite in the calcretes of mediterranean and tropical areas with marked dry season Sci. Géol., Bull. 72 131140.Google Scholar
Paquet, H., Duplay, J., Valleron, M. M., Millot, G., Schultz, L. G., van Olphen, H. and Mumpton, F. A., 1987 Octahedral compositions of individual particles in smectite-palygorskite and smectite-sepiolite assemblages Proc. 8th Int. Clay Conf., Denver, 1985 Bloomington, Ind. The Clay Minerals Society 7377.Google Scholar
Peacor, D. R. and Buseck, P. R., 1992 Analytical electron microscopy: X-ray analysis Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy Washington, D.C. Mineralogical Society of America 113140 10.1515/9781501509735-008.CrossRefGoogle Scholar
Raynal, R., (1952) Quelques données nouvelles au sujet de l’Oligo-Miocène du bassin de la Moulouya: C.R. Soc. Géol. France, 6° ser., 2, 4344.Google Scholar
Reynolds, R. C., Brindley, G. W. and Brown, G., 1980 Interstratified clay minerals Crystal Structure of Clay Minerals and Their X-ray Identification London Mineralogical Society 249302.CrossRefGoogle Scholar
Reynolds, R. C., (1985) NEWMOD, a computer program for the calculation of basal diffraction intensities of mixed-layered clay minerals: R.C. Reynolds, 8 Brooks Rd., Hanover, New Hampshire 03755.Google Scholar
Robertson, R., 1961 The origin of the Fullers Earths Min. Mag. 4 282287.Google Scholar
Rogers, L., Martin, A. and Norrish, K., 1954 Palygorskite from Queensland Min. Mag. 30 534540.Google Scholar
Samuel, J., Rouault, R. and Besnus, Y., 1985 Analyse multiélémentaire standardisée des matériaux géologiques en spectrométrie d’émission par plasma à couplage inductif Analusis 17 312317.Google Scholar
Singer, A., (1984) Pedogenic palygorskite in the arid environment: in Palygorskite-Sepiolite, Singer, A., and Galan, E., eds., Developments in Sedimentology 37, 169175.Google Scholar
Srodoh, J., (1987) Illite/smectite in the rock cycle: Summaries, Galan, E., Perez-Rodriquez, J., and Cornejo, J., eds., Sevilla, Proc. 6th Meeting of the European Clay Group, Seville, 4850.Google Scholar
Srodon, J., Eberl, D. and Bailey, S. W., 1984 Illites Micas Washington, D.C. Mineralogical Society of America 495539 10.1515/9781501508820-016.CrossRefGoogle Scholar
Trauth, N., (1977) Argiles évaporitiques dans la sédimentation carbonatée continentale et épicontinentale tertiaire. Bassins de Paris, de Mormoiron et de Salinelle (France), Jbel Ghassoul (Maroc): Sci. Géol. Mém. 19, 195 pp.Google Scholar
Weaver, C. E., (1984) Origin and geologic applications of the palygorskite deposits of the S.E. United States: in Palygorskite-Sepiolite: Occurrences, Genesis and Uses, Singer, A., and Galan, E., eds., Developments in Sedimentology 37, 3958.Google Scholar
Weaver, C. E. and Beck, K. C., 1977 Miocene of the S.E. United States: A model for chemical sedimentation in a peri-marine environment Sediment. Geol. 17 1234 10.1016/0037-0738(77)90062-8.CrossRefGoogle Scholar
Weaver, C. E., and Pollard, L. D., (1975) The chemistry of clay minerals: Developments in Sedimentology 15, 213 pp.Google Scholar
Yoder, H. S. and Eugster, H. P., 1955 Synthetic and natural muscovites Geochim. Cosmochim. Acta 8 225280 10.1016/0016-7037(55)90001-6.CrossRefGoogle Scholar