Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T21:32:02.207Z Has data issue: false hasContentIssue false

An Ultraviolet Spectroscopic Method for Monitoring Surface Acidity of Clay Minerals under Varying Water Content

Published online by Cambridge University Press:  01 July 2024

George W. Bailey
Affiliation:
National Environmental Research Center-Corvallis, Southeast Environmental Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30601, U.S.A.
S. W. Karickhoff
Affiliation:
National Environmental Research Center-Corvallis, Southeast Environmental Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30601, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The ability of a clay mineral surface to function as an acid is not represented by bulk pH measurements. A method using u.v. analysis and organic indicators has been developed to monitor surface acidity. The u.v. organic indicator method enables sensitive in situ quantification of surface-induced protonation in wet or dry clay systems. The clay preparation procedure used yields reproducible acidic behavior.

Résumé

Résumé

L’aptitude de la surface d’une argile à fonctionner comme un acide n’est pas représentée par des mesures de pH effectuées sur la masse du produit. Une méthode utilisant l’analyse u.v. et des indicateurs organiques a été développée pour évaluer l’acidité de surface. La méthode u.v.-indicateur organique permet une quantification sensible in situ de la protonation induite par la surface dans les systèmes argile humide ou sèche. Le procédé utilisé pour la préparation de l’argile permet d’obtenir un comportement acide reproductible.

Kurzreferat

Kurzreferat

Die Fähigkeit einer Tonmineraloberfläche als Säure zu wirken, wird durch eine pH-Messung an der Gesamtprobe nicht widergegeben. Es wurde eine Methode entwickelt, um unter Verwendung der u.v.-Analyse und organischer Indikatoren die Oberflächenacidität zu bestimmen. Die u.v.-Indikator- methode ermöglicht empfindliche in situ Bestimmung oberflächeninduzierter Protonierung in nassen oder trockenen Tonsystemen. Das zur Präparafion der Tone benutzte Verfahren liefert reproduzierbare Aciditätseigenschaften.

Резюме

Резюме

Способность поверхности глинистого минерала функционировать в качестве кислоты не выражается измерением рН в общей массе. Для проверки кислотности поверхности разработали метод анализа ультрафиолетовым спектром и органическими индикаторами. Метод ультрафиолетового органического индикатора дает возможность квантифицировать на месте протонацию, вызванную на поверхности влажной или сухой глины. Процедура приготовления глины дала возможность воспроизведения кислотного поведения поверхности.

Type
Research Article
Copyright
Copyright © 1973 The Clay Minerals Society

References

Bailey, G. W. and White, J. L., (1964) Review of adsorption and desorption of organic pesticides by soil colloids, with implications concerning pesticide bioactivity J. Agr. Food Chem. 12 324332.CrossRefGoogle Scholar
Bailey, G. W. and White, J. L., (1970) Factors influencing the adsorption, desorption and movement of pesticides in soil Residue Rev. 32 2992.Google Scholar
Bailey, G. W., White, J. L. and Rothberg, T., (1968) Adsorption of organic herbicides by montmorillonite: Role of pH and chemical character of adsorbate Soil Sci. Soc. Am. Proc. 32 222234.CrossRefGoogle Scholar
Dodd, C. G. and Satyabrata, R., (1960) Semiquinone cation adsorption on montmorillonite as a function of surface acidity Clays and Clay Minerals 8 237251.CrossRefGoogle Scholar
Farmer, V. C. and Mortland, M. M. (1966) An infra-red study of the coordination of pyridine and water to exchangeable cations in montmorillonite and saponite: J. Chem. Soc. (Lond.) A. 344351.CrossRefGoogle Scholar
Fripiat, J. J., Helsen, J. and Vielvoye, L., (1964) Formation de radicaux libres sur la surface des montmorillonites Bull. Groupe Fr. Argiles 15 310.CrossRefGoogle Scholar
Fripiat, J. J., Jelli, A., Poncelet, G. and Andri, J., (1965) Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonite and silicates J. Phys. Chem. 69 21852197.CrossRefGoogle Scholar
Harter, R. D. and Ahlrichs, J. L., (1967) Determination of clay surface acidity by infra-red spectroscopy Soil Sci. Soc. Am. Proc. 31 3033.CrossRefGoogle Scholar
Harter, R. D. and Ahlrichs, J. L., (1969) Effect of acidity on reactions of organic acids and amines with montmorillonite clay surface Soil Sci. Soc. Am. Proc. 33 859863.CrossRefGoogle Scholar
Kerr, G. T., Zimmermann, R. H., Fox, H. A. and Wells, F. H., (1955) Degradation of hectorite by hydrogen ion Clays and Clay Minerals 4 322329.Google Scholar
Low, P. F., (1955) The role of aluminum in the titration of bentonite Soil Sci. Soc. Am. Proc. 19 135139.CrossRefGoogle Scholar
McAuliffe, C. and Coleman, N. T., (1955) H-ion catalysis by acid clays and exchange resins Soil Sci. Soc. Am. Proc. 19 156160.CrossRefGoogle Scholar
Mortland, M. M., (1968) Protonation of compounds at clay mineral surfaces Trans. 9th Internat. Congr. Soil Sci. 1 691699.Google Scholar
Paver, H. and Marshall, C. E., (1934) The role of aluminum in the reactions of the clays J. Soc. Chem. Ind. 53 750760.Google Scholar
Perrin, D. D., (1965) Dissociation Constants of Organic Bases in Aqueous Solution London Butterworths.Google Scholar
Raman, R. V. and Mortland, M. M., (1969) Proton transfer reactions at clay mineral surfaces Soil Sci. Soc. Am. Proc. 33 313317.CrossRefGoogle Scholar
Russell, J. D., (1965) Infra-red study of reactions of ammonia with montmorillonite and saponite Trans. Faraday Soc. 61 22842294.CrossRefGoogle Scholar
Russell, J. D., Cruz, M. I. and White, J. L., 1968a The adsorption of 3-aminotriazole by montmorillonite J. Agr. Food Chem. 16 2124.Google Scholar
Russell, J. D., Cruz, M., White, J. L., Bailey, G. W., Payne, W. R. Jr. Pope, J. D. Jr. and Teasley, J. I., 1968b Mode of chemical degradation of s-triazines by montmorillonite Science 160 13401342.CrossRefGoogle ScholarPubMed
Serratosa, J. M., (1966) Infra-red analysis of the orientation of pyridine molecules in clay complexes Clays and Clay Minerals 14 385391.CrossRefGoogle Scholar
Swoboda, A. R. and Kunze, G. W., (1964) Infra-red study of pyridine adsorbed on montmorillonite surfaces Clays and Clay Minerals 13 277288.Google Scholar
Swoboda, A. R. and Kunze, G. W., (1968) Reactivity of montmorillonite surfaces with weak organic bases Soil Sci. Soc. Am. Proc. 32 806811.CrossRefGoogle Scholar
Talhoun, S. A. and Mortland, M. M., (1966) Complexes of montmorillonite with primary, secondary and tertiary amides—I. Protonation of amides on the surface of montmorillonite Soil Sci. 102 248254.CrossRefGoogle Scholar
Trouillaux, R., Salvadore, P., Vandermeersche, C. and Fripiat, J. J., (1968) Study of water layers adsorbed on Na-and Ca-montmorillonite by the pulsed nuclear magnetic resonance technique Israel J. Chem. 6 337348.CrossRefGoogle Scholar
Uytterhoeven, J. B., Christner, L. G. and Hall, W. K., (1965) Studies of the hydrogen held by solids—VIII. The decationated zeolites J. Phys. Chem. 69 21172126.CrossRefGoogle Scholar
Walling, C., (1950) The acid strength of surfaces J. Am. Chem. Soc. 72 11641168.CrossRefGoogle Scholar
Yariv, S., Heller, L. and Kaufherr, N., (1969) Effect of acidity of montmorillonite interlayers on the sorption of aniline derivatives Clays and Clay Minerals 17 301308.CrossRefGoogle Scholar
Young, J. F., (1967) Humidity control in the laboratory using salt solutions—A review J. Appl. Chem. 17 241245.CrossRefGoogle Scholar