Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T02:47:39.841Z Has data issue: false hasContentIssue false

An Electron Optical Investigation of the Alteration of Kaolinite to Halloysite

Published online by Cambridge University Press:  28 February 2024

Balbir Singh
Affiliation:
Soil Science and Plant Nutrition, School of Agriculture, The University of Western Australia, Nedlands, W.A., 6009, Australia
R. J. Gilkes
Affiliation:
Soil Science and Plant Nutrition, School of Agriculture, The University of Western Australia, Nedlands, W.A., 6009, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Parallel-oriented and exceptionally long (> 10 μm) tubes of halloysite occur in the pallid zone of a deeply-weathered lateritic profile on granite in southwest Australia.

Transmission electron microscopy and selected-area electron diffraction of ultrathin sections showed that kaolinite plates within pseudomorphs of mica crystals had fractured at irregular intervals along the a crystallographic axis to produce laths elongated along the b axis. The laths near the edges of the pseudomorphs were less constrained by the pseudomorph and had rolled to produce halloysite tubes. The tubes varied in diameter and degree of roundness. Some tubes were polyhedral rather than cylindrical in cross section. The length and number of planar faces in a tube and the angle between faces varied, exhibiting no consistent pattern.

Tubes in dispersed clay samples showed two types of twinning. In the first type, tubes and associated laths were joined together side by side. In the second type, single tubes bifurcated into two individual tubes. It is proposed that the first type of twinning occurred by folding of adjacent laths that remained joined together while the second type occurred due to exfoliation of a thick lath followed by folding of the exfoliated lath fragments into tubes.

Analytical electron microscopy showed that the chemical compositions of halloysite tubes, laths, and kaolinite plates were similar with the average cation exchange capacity of single tubes being small (4.5 meq/100 g) but higher than values for laths (2.8 meq/100 g) and plates (1.9 meq/100 g).

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Ahn, J. H. and Peacor, D. R., Kaolinization of biotite: TEM data and implications for an alteration mechanism Amer. Mineral. 1987 72 353356.Google Scholar
Anand, R. R., Gilkes, R. J., Armitage, T. M. and Hillyer, J. W., Feldspar weathering in a lateritic saprolite Clays & Clay Minerals 1985 33 3143 10.1346/CCMN.1985.0330104.CrossRefGoogle Scholar
Bailey, S. W., Halloysite—A critical assessment Proc. Int. Clay Conf., Strasbourg, France 1989 86 8998.Google Scholar
Banfield, J. F. and Eggleton, R. A., Transmission electron microscope study of biotite weathering Clays & Clay Minerals 1988 36 4760 10.1346/CCMN.1988.0360107.CrossRefGoogle Scholar
Banfield, J. F. and Eggleton, R. A., Analytical transmission electron microscope studies of plagioclase, muscovite, and K-feldspar weathering Clays & Clay Minerals 1990 38 7789 10.1346/CCMN.1990.0380111.CrossRefGoogle Scholar
Bates, T. F., Hildebrand, F. A. and Swineford, A., Morphology and structure of endellite and halloysite Amer. Mineral. 1950 6 237248.Google Scholar
Bates, T. F. and Gard, J. A., The kaolin minerals The Electron-optical Investigation of Clays 1971 London Mineral. Soc. 109157.CrossRefGoogle Scholar
Brindley, G. W. and Comer, J. J., The structure and morphology of a kaolin clay from Les Eyzies (France) Clays & Clay Minerals 1956 456 6166.Google Scholar
Chukhrov, F. V., Zvyagin, B. B., Heller, L. and Weiss, A., Halloysite. a crystallochemically and mineralogically distinct species Proc. Int. Clay Conf., Jerusalem 1966 Jerusalem Israel Prog. Sci. Transi. 1125.Google Scholar
Churchman, G. J., Aldridge, L. P. and Carr, R. M., The relationship between the hydrated and dehydrated states of an halloysite Clays & Clay Minerals 1972 20 241246 10.1346/CCMN.1972.0200409.CrossRefGoogle Scholar
Churchman, G. J. and Gilkes, R. J., Recognition of intermediates in the possible transformation of halloysite to kaolinite in weathering profiles Clay Miner. 1989 24 579590 10.1180/claymin.1989.024.4.02.CrossRefGoogle Scholar
Churchman, G. J., Whitton, J. S., Claridge, G G C and Theng, B. K. G., Intercalation method using for-mamide for differentiating halloysite from kaolinite Clays & Clay Minerals 1984 32 241248 10.1346/CCMN.1984.0320401.CrossRefGoogle Scholar
Costanzo, P. M. and Giese, R. F. Jr., Dehydration of synthetic hydrated kaolinite: A model for dehydration of halloysite (10 Å) Clays & Clay Minerals 1985 33 415423 10.1346/CCMN.1985.0330507.CrossRefGoogle Scholar
Delvaux, B., Herbillon, A. J., Vielvoye, L. and Mestdagh, M. M., Surface properties and clay mineralogy of hydrated halloysitic soil clays. II Evidence for the presence of halloysite/smectite (H/Sm) mixed-layer clays Clay Miner. 1990 25 141160 10.1180/claymin.1990.025.2.02.CrossRefGoogle Scholar
Dixon, J. B., Dixon, J. B. and Weed, S. B., Kaolin and serpentine group minerals Minerals in Soil Environments 1989 Madison, Wisconsin Soil Sci. Soc. America 468519.CrossRefGoogle Scholar
Dixon, J. B. and McKee, T. R., Internal and external morphology of tubular and spheroidal halloysite particles Clays & Clay Minerals 1974 22 127137 10.1346/CCMN.1974.0220118.CrossRefGoogle Scholar
Eswaran, H. and Bin, W. C., A study of deep weathering profile on granite in peninsular Malaysia: II. Mineralogy of the clay, silt, and sand fractions Soil Sci. Soc. Am. J. 1978 42 149158 10.2136/sssaj1978.03615995004200010033x.CrossRefGoogle Scholar
Giese, R. F. Jr., Kaolin minerals: Structures and stabilities. Chap. 3 Hydrous Phyllosilicates (Exclusive of Micas) 1988 19 2966 10.1515/9781501508998-008.CrossRefGoogle Scholar
Gilkes, R. J. and Suddhiprakarn, A., Biotite alteration in deeply weathered granite. II The oriented growth of secondary minerals Clays & Clay Minerals 1979 27 361367 10.1346/CCMN.1979.0270506.CrossRefGoogle Scholar
Gilkes, R. J., Anand, R. R. and Suddhiprakarn, A., How the microfabric of soils may be influenced by the structure and chemical composition of parent minerals Trans. Int. Soil Sci. Conf. Hamburg 1986 6 10931106.Google Scholar
Gilkes, R. J., Scholz, A. and Dimmock, G. M., Lateritic deep weathering of granite J. Soil Sci. 1973 24 523536 10.1111/j.1365-2389.1973.tb02319.x.CrossRefGoogle Scholar
Honjo, G. and Mihama, K., A study of clay minerals by electron diffraction diagrams due to individual crystallites Acta Cryst. 1954 7 511513 10.1107/S0365110X54001612.CrossRefGoogle Scholar
Honjo, G., Kitamura, N. and Mihama, K., A study of clay minerals by means of single crystal electron diffraction diagrams—The structure of tubular kaolin Clay Minerals Bull. 1954 4 133141 10.1180/claymin.1954.002.12.03.CrossRefGoogle Scholar
Hope, E. W. and Kittrick, J. A., Surface tension and morphology of halloysite Amer. Mineral. 1964 49 859866.Google Scholar
Keller, W. D., Classification of kaolins exemplified by their textures in scan electron micrographs Clays & Clay Minerals 1978 26 120 10.1346/CCMN.1978.0260101.CrossRefGoogle Scholar
Kirkman, J. H., Morphology and structure of halloysite in New Zealand tephras Clays & Clay Minerals 1981 29 19 10.1346/CCMN.1981.0290101.CrossRefGoogle Scholar
Kohyama, N., Fukushima, K. and Fukami, A., Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell Clays & Clay Minerals 1978 26 2540 10.1346/CCMN.1978.0260103.CrossRefGoogle Scholar
Kunze, G. W. and Bradley, W. F., Occurrence of a tabular halloysite in a Texas soil Clays & Clay Minerals 1964 12 523527 10.1346/CCMN.1963.0120145.CrossRefGoogle Scholar
McCrea, A. F., Anand, R. R. and Gilkes, R. J., Mineralogical and physical properties of lateritic pallid zone materials developed from granite and dolerite Geoderma 1990 47 3357 10.1016/0016-7061(90)90046-C.CrossRefGoogle Scholar
Millot, G., Geology of Clays 1970 Berlin Springer-Verlag 10.1007/978-3-662-41609-9.CrossRefGoogle Scholar
Noro, H., Hexagonal platy halloysite in an altered tuffbed, Komaki City, Aichi Prefecture, central Japan Clay Miner. 1986 21 401415 10.1180/claymin.1986.021.3.11.CrossRefGoogle Scholar
Quantin, P., Herbillon, A. J., Janot, C. and Sieffermann, G., L’halloysite blanche riche en fer de Vate (Vanuatu)—Hypothese d’un edifice interstratifie halloysite-hisin-gerite Clay Miner. 1984 19 629643 10.1180/claymin.1984.019.4.09.CrossRefGoogle Scholar
Radoslovich, E. W., Cell dimension studies on layer lattice silicates: A summary Clavs & Clay Minerals 1963 11 225228 10.1346/CCMN.1962.0110121.CrossRefGoogle Scholar
Radoslovich, E. W., The cell dimensions and symmetry of layer-lattice silicate. VI. Serpentine and kaolin morphology Amer. Mineral. 1963 48 368378.Google Scholar
Robertson, I D M and Eggleton, R. A., Weathering of granitic muscovite to kaolinite and halloysite and plagioclase-derived kaolinite to halloysite Clays & Clav Minerals 1991 39 113126 10.1346/CCMN.1991.0390201.CrossRefGoogle Scholar
Ross, G. J., Kodama, H., Wang, C., Gray, J. T. and Lafreniere, L. B., Halloysite from a strongly weathered soil at Mont Jacques Cartier, Quebec Soil Sci. Soc. Am. J. 1983 47 327332 10.2136/sssaj1983.03615995004700020031x.CrossRefGoogle Scholar
De Souza Santos, P., Mineralogical studies of kaolinite-halloysite clays: Part III. A fibrous kaolin mineral from Piedade, Sao Paulo, Brazil Amer. Mineral. 1966 50 619627.Google Scholar
Spurr, A. R., A low viscosity epoxy resin: Embedding medium for electron microscopy J. Ultrastruct. Res. 1969 26 3143 10.1016/S0022-5320(69)90033-1.CrossRefGoogle ScholarPubMed
Tazaki, K., van Olphen, H. and Veniale, F., Analytical electron microscopic studies of halloysite formation—Morphology and composition in halloysite Proc. 7th Int. Clay Conf., Italy 1982 Amsterdam Elsevier 573584.Google Scholar
Towe, K. M. and Hamilton, G. H., Ultramicrotome-induced deformation artifacts in densely calcified material J. Ultrastruct. Res. 1968 22 274281 10.1016/S0022-5320(68)90020-8.CrossRefGoogle ScholarPubMed
Wada, S. and Mizota, C., Iron-rich halloysite (10 Å) with crumpled lamellar morphology from Hokkaido, Japan Clays & Clay Minerals 1982 30 315317 10.1346/CCMN.1982.0300411.CrossRefGoogle Scholar
Williams, I. R., South Western Province Geology of Western Australia 1975 Australia Geol. Surv. W. 6569.Google Scholar