Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T22:16:04.779Z Has data issue: false hasContentIssue false

Ambient-Temperature Synthesis, Evolution, and Characterization of Cobalt-Aluminum Hydrotalcite-Like Solids

Published online by Cambridge University Press:  28 February 2024

Hillary A. Thompson*
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115, USA
George A. Parks
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115, USA
Gordon E. Brown Jr.
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115, USA Stanford Synchrotron Radiation Laboratory, Stanford, California 94309, USA
*
Present address: Los Alamos National Laboratory, MS D469, Los Alamos, New Mexico 87545, USA.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Double hydroxide solids precipitated homogeneously from three laboratory-synthesized aqueous solutions that simulated mildly contaminated surface or groundwater. Over a limited pH range, precipitates formed rapidly from dissolved ions, and more slowly by incorporating ions dissolving from other solids, including highly soluble aluminous solids. The precipitates were characterized by size and shape via transmission electron microscopy (TEM), by composition via inductively coupled plasma-mass spectrometry (ICP-MS) of mother solutions and analytical electron microscopy (AEM) of precipitates, and by structure via powder X-ray diffraction (XRD), TEM, and extended X-ray absorption fine structure (EXAFS) spectroscopy. They were identified as nanocrystalline cobalt hydrotalcite (CoHT) of the form [Co(II)1-xAl(III)x(OH)2]x+(Anx/nmH2O, with x = 0.17–0.25, A = CO32−, NO3, or H3SiO4n = anion charge and m undetermined. Complete solid solution may exist at the macroscopic level for the range of stoichiometrics reported, but clustering of Co atoms within hydroxide layers indicates a degree of immiscibility at the molecular scale. Composition evolved toward the Co-rich endmember with time for at least one precipitate. The small layer charge in the x = 0.17 precipitate caused anionic interlayers to be incomplete, producing interstratification of hydrotalcite and brucite-like layers. Solubility products estimated from solution measurements for the observed final CoHT stoichiometries suggest that CoHT is less soluble than the inactive forms of Co(OH)2 and CoCO3 near neutral pH. Low solubility and rapid formation suggest that CoHT solids may be important sinks for Co in contact with near neutral pH waters. Because hydrotalcite can incorporate a range of transition metals, precipitation of hydrotalcite may be similarly effective for removing other trace metals from natural waters.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Allmann, R., 1968 The crystal structure of pyroaurite Acta Crystallographica B24 972977 10.1107/S0567740868003511.CrossRefGoogle Scholar
Allmann, R., 1970 Doppelschichtstrukturen mit brucitahnlichen schichtionen [Me(II)1-xMe(III)x(OH)2]x+ Chimia 24 99108.Google Scholar
Allmann, R. and Jepsen, H.R., 1969 Die struktur des hydrotalkits Neues Jahrbuch für Mineralogie Monatshefte 544551.Google Scholar
Baes, C.F. Jr. and Mesmer, R.E., 1986 The Hydrolysis of Cations New York John Wiley & Sons.Google Scholar
Baltpurvins, K.A. Burns, R.C. and Lawrance, G.A., 1997 Effect of Ca2+, Mg2+, and anion type on the aging of iron(III) hydroxide precipitates Environmental Science & Technology 31 10241032 10.1021/es960498y.CrossRefGoogle Scholar
Bennett, D.G. Read, D. Atkins, M. and Classer, E.P., 1992 A thermodynamic model for blended cements. II. Cement hydrate phases: Thermodynamic values and modelling studies Journal of Nuclear Materials 190 315325 10.1016/0022-3115(92)90096-4.CrossRefGoogle Scholar
Bish, D.L., 1980 Anion-exchange in takovite: Applications to other hydroxide minerals Bulletin de Mineralogie 103 170175.CrossRefGoogle Scholar
Boclair, J.W. and Braterman, R.S., 1999 Layered double hydroxide stability. Part I: Relative stabilities of layered double hydroxides and their simple counterparts Chemistry of Materials 11 298302 10.1021/cm980523u.CrossRefGoogle Scholar
Boclair, J.W. Braterman, P.S. Jiang, J. Lou, S. and Yarberry, F., 1999 Layered double hydroxide stability. Part II: Formation of Cr(III)-containing layered double hydroxides directly from solution Chemistry of Materials 11 303307 10.1021/cm980524m.CrossRefGoogle Scholar
Brindley, G.W. and Kikkawa, S., 1979 A crystal-chemical study of Mg,Al and Ni,Al hydroxy-perchlorates and hy-droxy-carbonates American Mineralogist 64 836843.Google Scholar
Bruno, J. Duro, L. d. Pablo, J. Casas, I. Ayora, C. Delgado, J. Gimeno, M.J. Pena, J. Linklater, C P d Villar, L. and Gomez, P., 1998 Estimation of the concentrations of trace metals in natural systems. The application of codissolution and coprecipitation approaches to El Berrocal (Spain) and Pocos de Caldas (Brazil) Chemical Geology 151 277291 10.1016/S0009-2541(98)00085-0.CrossRefGoogle Scholar
Busca, G. Lorenzelli, V. and Bolis, V., 1992 Preparation, bulk characterization and surface chemistry of high-surface-area cobalt aluminate Materials Chemistry and Physics 31 221228 10.1016/0254-0584(92)90258-A.CrossRefGoogle Scholar
Cavani, F. Trifiro, E. and Vaccari, A., 1991 Hydrotalcitetype anionic clays: Preparation, properties and applications Catalysis Today 11 173301 10.1016/0920-5861(91)80068-K.CrossRefGoogle Scholar
Crovisier, J.L. Fritz, B. Grambow, B. Eberhart, J.P. and Werme, L.O., 1986 Dissolution of basaltic glass in seawater: Experiments and thermodynamic modelling Scientific Basis for Nuclear Waste Management, Volume 50 Pittsburgh Materials Research Society 273280.Google Scholar
de la d’Espinose Caillerie, J.-B. Kermarec, M. and Clause, O., 1995 Impregnation of γ-alumina with Ni(II) or Co(II) ions at neutral pH: Hydrotalcite-type coprecipitate formation and characterization Journal of the American Chemical Society 117 1147111481 10.1021/ja00151a010.CrossRefGoogle Scholar
Farley, K.J. Dzombak, D.A. and Morel, F.M.M., 1985 A surface precipitation model for the sorption of cations on metal oxides Journal of Colloid and Interface Science 106 226242 10.1016/0021-9797(85)90400-X.CrossRefGoogle Scholar
Feitknecht, W., 1942 Uber die bildung von doppelhydroxyden zwischen zwei- und dreiwertigen metallen Helvetica Chimica Acta 25 555569 10.1002/hlca.19420250314.CrossRefGoogle Scholar
George, G.N. and Pickering, I.J., 1995 EXAFSPAK: A suite of computer programs for analysis of x-ray absorption spectra Stanford Stanford Synchrotron Radiation Laboratory.Google Scholar
Guerlou-Demourgues, L. Denage, C. and Delmas, C., 1994 New manganese-substituted nickel hydroxides. Part 1. Crystal chemistry and physical characterization Journal of Power Sources 52 269274 10.1016/0378-7753(94)02023-X.CrossRefGoogle Scholar
Hachiya, K. Sasaki, M. Ikeda, T. Mikami, N. and Yasunaga, T., 1984 Static and kinetic studies of adsorption-desorption of metal ions on a γ-Al2O3 surface. 2. Kinetic study by means of pressure-jump technique Journal of Physical Chemistry 88 2731 10.1021/j150645a008.CrossRefGoogle Scholar
Hansen, H.C.B. Kock, C.B. and Taylor, R.M., 1994 Synthesis and characterization of cobalt(II)-iron(III) hydroxide carbonate, a layered double hydroxide belonging to the pyroaurite group Journal of Solid State Chemistry 113 4653 10.1006/jssc.1994.1340.CrossRefGoogle Scholar
Hemingway, B.S. Sposito, G. and Sposito, G., 1996 Inorganic aluminum-bearing solid phases The Environmental Chemistry of Aluminum Boca Raton CRC Lewis 81116.Google Scholar
Lotmar, W. and Feitknecht, W., 1936 Uber anderungen der ionenabstande in hydroxyd-schichtengittern Zeitschrift für Kristallographie 368378.CrossRefGoogle Scholar
Miyata, S., 1983 Anion-exchange properties of hydrotalcitelike compounds Clays and Clay Minerals 31 305311 10.1346/CCMN.1983.0310409.CrossRefGoogle Scholar
Myneni, S.C.B. Tokunaga, T.K. and Brown, G.E. Jr., 1997 Abiotic selenium redox transformations in the presence of Fe(II,III) oxides Science 278 11061109 10.1126/science.278.5340.1106.CrossRefGoogle Scholar
Naumov, G.B. Ryzhenko, B.N. and Khodakovsky, I.L., 1974 Handbook of Thermodynamic Data Menlo Park USGS, USGS-WRD-74-001.Google Scholar
Navrotsky, A., 1994 Physics and Chemistry of Earth Materials Cambridge Cambridge University Press 10.1017/CBO9781139173650.CrossRefGoogle Scholar
Nordstrom, D.K. May, H.M. and Sposito, G., 1996 Aqueous equilibrium data for mononuclear aluminum species The Environmental Chemistry of Aluminum Boca Raton CRC Lewis 3980.Google Scholar
Nordstrom, D.K. and Munoz, J.L., 1994 Geochemical Thermodynamics Boston Blackwell.Google Scholar
Papelis, C. Hayes, K.E. and Leckie, J.O., 1988 HYDRAQL: A program for the computation of chemical equilibrium composition of aqueous batch systems including surface-complexation modeling of ion adsorption at the oxide/solution interface Stanford Stanford University, Technical Report #306.Google Scholar
Refait, P. and Genin, J-MR, 1997 Mechanisms of oxidation of Ni(II)-Fe(II) hydroxides in chloride-containing aqueous media: Role of the pyroaurite-type Ni-Fe hydroxychlorides Clay Minerals 32 597613 10.1180/claymin.1997.032.4.10.CrossRefGoogle Scholar
Rehr, JJ M d Leon, J. Zabinsky, S.I. and Albers, R.C., 1991 Theoretical x-ray absorption fine structure standards Journal of the American Chemical Society 113 51355140 10.1021/ja00014a001.CrossRefGoogle Scholar
Reichle, W.T., 1985 Catalytic reactions by thermally activated, synthetic, anionic-clay minerals Journal of Catalysis 94 547557 10.1016/0021-9517(85)90219-2.CrossRefGoogle Scholar
Rucklidge, J.C. and Zussman, J., 1965 The crystal structure of the serpentine mineral, lizardite Mg3Si2O5(OH)4 Acta Crystallographica 19 381389 10.1107/S0365110X65003493.CrossRefGoogle Scholar
Scheidegger, A.M. Fendorf, M. and Sparks, D.L., 1996 Mechanisms of nickel sorption on pyrophyllite: Macroscopic and microscopic approaches Soil Science Society of America Journal 60 17631772 10.2136/sssaj1996.03615995006000060022x.CrossRefGoogle Scholar
Scheidegger, A.M. Lamble, G.M. and Sparks, D.L., 1997 Spectroscopic evidence for the formation of mixed-cation hydroxide phases upon metal sorption on clays and aluminum oxides Journal of Colloid and Interface Science 186 118128 10.1006/jcis.1996.4624.CrossRefGoogle Scholar
Scheidegger, A.M. Strawn, D.G. Lamble, G.M. and Sparks, D.L., 1998 The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals: A time-resolved XAFS study Geochimica et Cosmochimica Acta 62 22332245 10.1016/S0016-7037(98)00136-7.CrossRefGoogle Scholar
Schindler, P.W. Liechti, P. and Westall, J.C., 1987 Adsorption of copper, cadmium, and lead from aqueous solution to the kaolinite/water interface Netherlands Journal of Agricultural Science 35 219230.CrossRefGoogle Scholar
Schutz, A. and Biloen, P., 1987 Interlamellar chemistry of hydrotalcites Journal of Solid State Chemistry 68 360368 10.1016/0022-4596(87)90323-9.CrossRefGoogle Scholar
Shannon, R.D. and Prewitt, C.T., 1969 Effective ionic radii in oxides and fluorides Acta Crystallographica B25 925946 10.1107/S0567740869003220.CrossRefGoogle Scholar
Smith, R.M. and Martell, A.E., 1997 N1ST Critical Stability Constants of Metal Complexes Database Maryland NIST, Gaithersburg.Google Scholar
Subramanian, V., 1973 Mechanisms of fixation of the trace metals manganese and nickel by ferric hydroxide Evanston, Illinois Northwestern University.Google Scholar
Taylor, R.M., 1984 The rapid formation of crystalline double hydroxy salts and other compounds by controlled hydrolysis Clay Minerals 19 591603 10.1180/claymin.1984.019.4.06.CrossRefGoogle Scholar
Thompson, H.A., 1998 Dynamic ion partitioning among dissolved, adsorbed, and precipitated phases in aging cobalt(II)/kaolinite/water systems Stanford, California Stanford University.Google Scholar
Thompson, H.A. Brown, GE Jr and Parks, G.A., 1997 XAFS spectroscopic study of uranyl coordination in solids and aqueous solution American Mineralogist 82 483496 10.2138/am-1997-5-607.CrossRefGoogle Scholar
Thompson, H.A. Parks, G.A. and Brown, G.E. Jr., 1999 Dynamic interactions of dissolution, surface adsorption, and precipitation in an aging cobalt(II)-clay-water system Geochimica et Cosmochimica Acta .CrossRefGoogle Scholar
Towle, S.N. Bargar, J.R. and Brown, G.E. Jr. and Parks, G.A., 1997 Surface precipitation of Co(II)(aq) on A12O3 Journal of Colloid and Interface Science 187 6282 10.1006/jcis.1996.4539.CrossRefGoogle Scholar
Vucelic, M. Jones, W. and Moggridge, G.D., 1997 Cation ordering in synthetic layered double hydroxides Clays and Clay Minerals 45 803813 10.1346/CCMN.1997.0450604.CrossRefGoogle Scholar
Yun, S.K. and Pinnavaia, T.J., 1995 Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides Chemistry of Materials 7 348354 10.1021/cm00050a017.CrossRefGoogle Scholar
Zachara, J.M. Cowan, C.E. and Resch, C.T., 1991 Sorption of divalent metals on calcite Geochimica et Cosmochimica Acta 55 15491562 10.1016/0016-7037(91)90127-Q.CrossRefGoogle Scholar