Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-30T21:53:43.597Z Has data issue: false hasContentIssue false

Al-Pillared Montmorillonite Obtained in Concentrated Media. Effect of the Anions (Nitrate, Sulfate and Chloride) Associated with the Al Species

Published online by Cambridge University Press:  01 January 2024

Amina Aouad
Affiliation:
CRMD CNRS-Université d’Orléans, 1b Rue de la Férollerie, 45071 Orléans, France
Alain Pineau
Affiliation:
CRMD CNRS-Université d’Orléans, 1b Rue de la Férollerie, 45071 Orléans, France
Denise Tchoubar
Affiliation:
CRT Plasma-Laser, Rue d’Issoudun, 45071 Orléans, France
Faïza Bergaya*
Affiliation:
CRMD CNRS-Université d’Orléans, 1b Rue de la Férollerie, 45071 Orléans, France
*
*E-mail address of corresponding author: [email protected]

Abstract

Basic Al chloride, sulfate and nitrate were prepared by hydrolysis of Al chloride followed by precipitation with a Na sulfate solution, then re-dissolution in a Ba nitrate solution. The three laboratory-synthesized oligomers and solid, commercial chlorhydrol were characterized by X-ray diffraction, 27Al nuclear magnetic resonance and scanning electron microscopy coupled with energy dispersion spectroscopy analysis. The results showed that basic Al chloride contained unknown crystalline Keggin species. In commercial chlorhydrol, Al13 species were present in small amounts aside from the monomeric species. Basic Al nitrate or sulfate contained exclusively Al13 species. Pillaring a raw montmorillonite with different Al complexes in very concentrated media using both the clay and the oligomer in the solid state led to different pillared structures. Characterization by transmission electron microscopy, nitrogen adsorption, and thermogravimetric analysis of the materials obtained shows that pillaring with sulfate or chloride oligomers gave very heterogeneous pillared clays. Although basic Al nitrate and commercial chlorhydrol give better ordered and well organized pillared clays, the stacking obtained with chlorhydrol is greater.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akitt, J.W. and Farthing, A., (1978) New 27A1 NMR studies of the hydrolysis of the aluminum(III) cation Journal of Magnetic Resonance 32 345352.Google Scholar
Akitt, J.W. and Mann, B.E., (1981) New 27A1 NMR spectroscopy at 104.2 MHz Journal of Magnetic Resonance 44 584589.Google Scholar
Allouche, L. and Taulelle, F., (2003) Conversion of Al13 Keggin ε into Al30: a reaction controlled by aluminum monomers Inorganic Chemistry Communications 6 11671170 10.1016/S1387-7003(03)00166-7.CrossRefGoogle Scholar
Allouche, L. Huguenarg, F. and Taullele, F., (2001) 3QMAS of three aluminum polycations: space group consistency between NMR and XRD Journal of Physics and Chemistry of Solids 62 15251531 10.1016/S0022-3697(01)00069-5.CrossRefGoogle Scholar
Aouad, A. Mandalia, T. and Bergaya, F., (2005) A novel method of Al-pillared montmorillonite preparation for potential industrial up-scaling Applied Clay Science 28 175182 10.1016/j.clay.2004.02.003.CrossRefGoogle Scholar
Bergaya, F., (1990) Argiles à piliers Matériaux Argileux, Structures, Propriétés et Applications France Groupe Française des Argiles 513537.Google Scholar
Bergaya, F. and Vayer, M., (1997) CEC of clays: Measurement by adsorption of a copper ethylenediamine complex Applied Clay Science 12 275280 10.1016/S0169-1317(97)00012-4.CrossRefGoogle Scholar
Casey, W.H., (2006) Large aqueous aluminium hydroxide molecules Chemical Reviews 106 116 10.1021/cr040095d.CrossRefGoogle ScholarPubMed
Duong, L.V. Wood, B.J. and Kloprogge, J.T., (2005) XPS study of basic aluminium sulphate and basic aluminium nitrate Materials Letters 59 19321936 10.1016/j.matlet.2005.02.029.CrossRefGoogle Scholar
Fetter, G. Heredia, G. Velázquez, L.A. Maubert, A.M. and Bosch, P., (1997) Synthesis of aluminium-pillared montmorillonites using highly concentrated clay suspensions Applied Catalysis A: General 162 4145 10.1016/S0926-860X(97)00081-1.CrossRefGoogle Scholar
Frini, N. Crespin, M. Trabelsi, M. Messad, D. Van Damme, H. and Bergaya, F., (1997) Preliminary results on the properties of pillared clays by mixed Al-Cu solutions Applied Clay Science 12 281292 10.1016/S0169-1317(97)00016-1.CrossRefGoogle Scholar
Fu, G. Nazar, L.F. and Bain, A.D., (1991) Aging processes of alumina sol-gels: characterisation of new aluminum polyoxycations by 27A1 NMR spectroscopy Chemistry of Materials 3 602610 10.1021/cm00016a009.CrossRefGoogle Scholar
Furrer, G. Ludwig, C. and Schindler, P.W., (1992) On the chemistry of the Keggin Al13 polymer. 1. Acid-base properties Journal of Colloid and Interface Science 149 5667 10.1016/0021-9797(92)90391-X.CrossRefGoogle Scholar
Gregg, S.J. and Sing, K.S.W., (1982) Adsorption, Surface Area and Porosity 2 London Academic Press Inc..Google Scholar
Johansson, G., (1960) On the crystal structure of the basic aluminium sulphate and the corresponding selenate Acta Chemica Scandinavica 14 769771 10.3891/acta.chem.scand.14-0769.CrossRefGoogle Scholar
Johansson, G., (1960) On the crystal structure of some basic aluminium salts Acta Chemica Scandinavica 14 771773 10.3891/acta.chem.scand.14-0771.CrossRefGoogle Scholar
Johansson, G., (1963) On the crystal structure of the basic aluminium sulfate 13 A12O3. 6SO4.xH2O Arkiv For Kemi 20 321342.Google Scholar
Kloprogge, J.T. Geus, J.W. Jansen, J.B.H. and Seykens, D., (1992) Thermal-stability of basic aluminum sulphate Thermochimica Acta 209 265276 10.1016/0040-6031(92)80204-A.CrossRefGoogle Scholar
Moreno, S. Gutierrez, E. Alvarez, A. Papayannakos, N.G. and Poncelet, G., (1997) Al-pillared clays: from lab syntheses to pilot scale production. Characterisation and catalytic properties Applied Catalysis A: General 165 103114 10.1016/S0926-860X(97)00194-4.CrossRefGoogle Scholar
Salerno, P. and Mendioroz, S., (2002) Preparation of Al-pillared montmorillonite from concentrated dispersions Applied Clay Science 22 115123 10.1016/S0169-1317(02)00133-3.CrossRefGoogle Scholar
Sanchez, A. and Montes, M., (1998) Influence of the preparation parameters (particle size and aluminium concentration) on the textural properties of Al-pillared clays for a scale-up process Microporous and Mesoporous Materials 21 117125 10.1016/S1387-1811(97)00057-7.CrossRefGoogle Scholar
Schönherr, V.S. Görz, H. Müller, D. and Gessner, W., (1981) Basic aluminium salts and their solutions. VI. Preparation and characterization of a water-soluble Al13O40 chloride Zeitschrift für Anorganische und Allgemeine Chemie 476 188194 10.1002/zaac.19814760522.CrossRefGoogle Scholar
Schoonheydt, R.A. and Leeman, H., (1992) Pillaring of saponite in concentrated medium Clay Minerals 27 249252 10.1180/claymin.1992.027.2.09.CrossRefGoogle Scholar
Seichter, W. Mögel, H.-J. Brand, P. and Salah, D., (1998) Crystal structure and formation of the aluminium hydroxide chloride [Al13(OH)24(H2O)24]Cl15.13H2O European Journal of Inorganic Chemistry 6 795797 10.1002/(SICI)1099-0682(199806)1998:6<795::AID-EJIC795>3.0.CO;2-A.3.0.CO;2-A>CrossRefGoogle Scholar
Shafran, K. and Perry, C.C. (2005) A systematic investigation of aluminum ion speciation at high temperature. Part. 1. Solution studies. Dalton Transactions, 20982105.CrossRefGoogle Scholar
Shafran, B.K. Deschaume, O. and Perry, C.C., (2004) High-temperature speciation studies of Al-ion hydrolysis Advanced Engineering Materials 6 836839 10.1002/adem.200400058.CrossRefGoogle Scholar
Sing, K.S.W. Everett, D.H. Haul, R.A.W. Moscou, L. Pierotti, R.A. Rouquerol, J. and Siemieniewska, T., (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity Pure and Applied Chemistry 57 603619 10.1351/pac198557040603.CrossRefGoogle Scholar
Storaro, L. Lenarda, M. Ganzerla, R. and Rinaldi, A., (1996) Preparation of hydroxyl Al and Al/Fe pillared bentonites from concentrated clay suspensions Microporous Materials 6 5563 10.1016/0927-6513(95)00081-X.CrossRefGoogle Scholar
Storaro, L. Lenarda, M. Perissinotto, M. Lucchini, V. and Ganzeria, R., (1998) Hydroxy-Al pillaring of concentrated suspensions of smectite clays Microporous and Mesoporous Materials 20 317331 10.1016/S1387-1811(97)00045-0.CrossRefGoogle Scholar
Teagarden, D.L. Kozlowski, J.F. White, J.L. and Hem, S.L., (1981) Aluminium chlorohydrate. 1. Structure studies Journal of Pharmaceutical Sciences 70 758761 10.1002/jps.2600700711.CrossRefGoogle Scholar
Tsuchida, T. Kitamura, K. and Inagaki, M., (1995) Formation of crystalline sulfates from Al-13 polymer-solutions — effect of washing on the transformation of type-I to type-II crystals Journal of Materials Chemistry 5 12331236 10.1039/jm9950501233.CrossRefGoogle Scholar
Vicente, M.A. and Lambert, J.-F., (2003) Al-pillaring of saponite with the Al polycation [Al13(OH)24(H2O)24]15+ using a new synthetic route Clays and Clay Minerals 51 168171 10.1346/CCMN.2003.0510206.CrossRefGoogle Scholar
Wang, M. and Muhammed, M., (1999) Novel synthesis of Al13-cluster-based alumina materials NanoStructured Materials 11 12191229 10.1016/S0965-9773(99)00412-2.CrossRefGoogle Scholar
Wang, W.Z. and Hsu, P.H., (1994) The nature of polynuclear OH-Al complexes in laboratory-hydrolyzed and commercial hydroxyaluminum solutions Clays and Clay Minerals 42 356368 10.1346/CCMN.1994.0420313.CrossRefGoogle Scholar