Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T01:07:43.618Z Has data issue: false hasContentIssue false

Alkali Cation Selectivity and Surface Charge of 2:1 Clay Minerals

Published online by Cambridge University Press:  28 February 2024

Shihe Xu*
Affiliation:
Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164
James B. Harsh
Affiliation:
Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164
*
1Corresponding author's current address: Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan 48824-1325.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A critical demand in environmental modeling and a desirable but elusive goal of research on the ion exchange properties of the charged solid surface has been to determine the selectivity coefficient from fundamental properties of the ions and surface. We developed a Hard and Soft Acid and Base (HSAB) Model to describe exchangeable cation selectivity on solid surfaces. Our previous work has shown that the model quantitatively describes alkali cation exchange on clay minerals in terms of the absolute electronegativity and softness of the exchangeable cations and two fitting parameters: α and β. This study was conducted to determine the relationship between α and β and surface charge characteristics of 2:1 clays. The layer charge and cation selectivity of seven smectites and one vermiculite were used. The regression of log Kvo against four combinations of charge properties was performed and the appropriate relationship between α, β, and surface charge was selected based on both statistical criteria (R2) and their consistency with the assumptions of the HSAB model. The selected model was then cross-validated using separate cation exchange data from the literature. It was found that α and β are linearly related to the amount of charge arising from mineral tetrahedral and octahedral sites, respectively. These results make it possible to predict the alkali cation selectivity of 2:1 clay minerals from their chemical composition data and the alkali cation properties.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Ames, L. L. Jr. Sand, L. B. and Goldich, S. S., 1958 A contribution on the Hector, California, bentonite deposit Econ. Geol. 53 2237 10.2113/gsecongeo.53.1.22.CrossRefGoogle Scholar
Brindley, G. W., 1980 Intracrystalline swelling of mont-morillonites in water-dimethylsulfoxide systems Clays & Clay Minerals 28 369372 10.1346/CCMN.1980.0280506.CrossRefGoogle Scholar
Brindley, G. W. and Ertem, G., 1971 Preparation and solvation properties of some variable charge montmoril-lonites Clays & Clay Minerals 19 399404 10.1346/CCMN.1971.0190608.CrossRefGoogle Scholar
Calvet, R. and Prost, R., 1971 Cation migration into empty octahedral sites and surface properties of clays Clays & Clay Minerals 19 175186 10.1346/CCMN.1971.0190306.CrossRefGoogle Scholar
Cariati, F., Erre, L., Micera, G., Piu, P. and Gessa, C., 1983 Effects of layer charge on the near-infrared spectra of water molecules in smectites and vermiculites Clays & Clay Minerals 31 447449 10.1346/CCMN.1983.0310606.CrossRefGoogle Scholar
Cicel, B. and Machajdik, D., 1981 Potassium and ammonium treated montmorillonites. I: Interstratified structures with ethylene glycol and water Clays & Clay Minerals 29 4046 10.1346/CCMN.1981.0290106.CrossRefGoogle Scholar
Cremers, A. and Thomas, C. T., 1968 The thermodynamics of sodium-cesium exchange on Camp Berteau mont-morillonite: An almost ideal case Isr. J. Chem. 6 949957 10.1002/ijch.196800120.CrossRefGoogle Scholar
Doner, H. E. and Mortland, M. M., 1971 Charge location as a factor in the dehydration of 2:1 clay minerals Soil Sci. Soc. Am. Proc. 35 360362 10.2136/sssaj1971.03615995003500020049x.CrossRefGoogle Scholar
Durand, B., Pelet, R. and Fripiat, J. J., 1972 Alkylammonium decomposition on montmorillonite surfaces in an inert atmosphere Clays & Clay Minerals 20 2135 10.1346/CCMN.1972.0200104.CrossRefGoogle Scholar
Earley, J. W., Osthaus, B. B. and Milne, I. H., 1953 Purification and properties of montmorillonite Amer. Miner. 38 707724.Google Scholar
Eberl, D. D., 1980 Alkali cation selectivity and fixation by clay minerals Clays & Clay Minerals 28 161172 10.1346/CCMN.1980.0280301.CrossRefGoogle Scholar
Eberl, D. D., Srodon, J., Northrop, H. R., Davis, J. and Hayes, K. F., 1986 Potassium fixation in smectite by wetting and drying Geo-chemical Processes at Mineral Surfaces Washington D. C. American Chemical Society 296326.Google Scholar
Eliason, J. R., 1966 Montmorillonite exchange equilibria with strontium-sodium-cesium Amer. Miner. 51 324335.Google Scholar
Farmer, V. C. and Russell, J. D., 1971 Interlayer complexes in layer silicates: The structure of water in lamellar ionic solutions Trans. Faraday Soc. 67 27372749 10.1039/tf9716702737.CrossRefGoogle Scholar
Faucher, J. A. and Thomas, H. C., 1954 Adsorption studies on clay minerals. IV: The system of montmorillonite-cesium-potassium J. Chem. Phys. 22 258261 10.1063/1.1740047.CrossRefGoogle Scholar
Foster, M. D., 1963 Interpretation of the composition of vermiculites and hydrobiotites Clays & Clay Minerals, Proc. 10th Clay Conf. New York Pergamon Press 7089.Google Scholar
Gast, R. G., 1972 Alkali metal cation exchange on Chambers montmorillonite Soil Sci. Soc. Am. Proc. 36 1419 10.2136/sssaj1972.03615995003600010003x.CrossRefGoogle Scholar
Gast, R. G. and Klobe, W. D., 1971 Sodium-lithium exchange equilibria on vermiculite at 25° and 50°C Clays & Clay Minerals 19 311319 10.1346/CCMN.1971.0190507.CrossRefGoogle Scholar
Grim, R. E. and Guven, N., 1978 Bentonites: Geology, Mineralogy, Properties and Uses (Developments in Sedi-mentology 24) New York Elsevier Press.Google Scholar
Hallmark, C. T., Wilding, L. P., Smeck, N. E., Page, A. L., Miller, R. H. and Keeney, D. R., 1982 Silicon Methods of Soil Analysis. Part 2—Chemical and Microbiological Properties Madison, Wisconsin American Society of Agronomy/Soil Science of America Publisher 263274.Google Scholar
Hofmann, U. and Kiemen, R., 1950 Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung Z. Anorg. Allg. Chem. 161 9599 10.1002/zaac.19502620114.CrossRefGoogle Scholar
Jaynes, W. F. and Bigham, J. M., 1987 Charge reduction, octahedral charge, and lithium retention in heated, Li-saturated smectites Clays & Clay Minerals 35 440448 10.1346/CCMN.1987.0350604.CrossRefGoogle Scholar
Jackson, M. L., 1973 Soil Chemical Analysis—Advanced Course Madison, Wisconsin University of Wisconsin.Google Scholar
Kittrick, J. A., 1973 Mica-derived vermiculites as unstable intermediates Clays & Clay Minerals 21 479488 10.1346/CCMN.1973.0210608.CrossRefGoogle Scholar
Krishnamoorthy, C. and Overstreet, R., 1949 An experimental evaluation of ion-exchange relationships Soil Sci. 69 4153 10.1097/00010694-195001000-00003.CrossRefGoogle Scholar
Kunishi, H. M. and Heald, W. R., 1968 Rubidium-sodium exchange on kaolinite and bentonite Soil Sci. Soc. Am. Proc. 32 201204 10.2136/sssaj1968.03615995003200020016x.CrossRefGoogle Scholar
Lagaly, G., 1982 Layer charge heterogeneity in vermiculite Clays & Clay Minerals 30 215222 10.1346/CCMN.1982.0300308.CrossRefGoogle Scholar
Laird, D. A., 1987 Layer charge and crystalline swelling of expanding 2:1 phyllosilicates Ames, Iowa Iowa State University.Google Scholar
Laudelout, H., van Bladel, R., Bolt, G. H. and Page, A. L., 1968 Thermodynamics of heterovalent cation exchange reactions in a montmorillonite clay Trans. Faraday Soc. 84 14771488 10.1039/tf9686401477.CrossRefGoogle Scholar
Lim, C. H., Jackson, L. M., Page, A. L., Miller, R. H. and Keeney, D. R., 1982 Dissolution for total elemental analysis Methods of Soil Analysis. Part 2— Chemical and Microbiological Properties Madison, Wisconsin American Society of Agronomy/Soil Science of America Publisher 112.Google Scholar
Maes, A. and Cremers, A., 1977 Charge density effects in ion exchange. Part 1: Heterovalent exchange equilibria J. Chem. Soc. Faraday Trans. 73 18071814 10.1039/f19777301807.CrossRefGoogle Scholar
Maes, A. and Cremers, A., 1978 Charge density effects in ion exchange. Part 2: Homovalent exchange equilibria J. Chem. Soc. Faraday Trans. 74 12341241 10.1039/f19787401234.CrossRefGoogle Scholar
Marshall, C. E. and Garcia, G., 1959 Exchange equilibria in a carboxylic resin and in attapulgite clay J. Phys. Chem. 63 16631666 10.1021/j150580a023.CrossRefGoogle Scholar
Martin, H. and Laudelout, H., 1963 Thermodynamique de l’echange des cations alcalins dans les argiles J. Chim. Phys. 60 10861099 10.1051/jcp/1963601086.CrossRefGoogle Scholar
Mattigod, S. V. and Sposito, G., 1978 Improved method for estimating the standard free energies of formation (ΔGf o,29815) of smectites Geochim. Cosmochim. Acta 42 17531762 10.1016/0016-7037(78)90232-6.CrossRefGoogle Scholar
Merriam, C. N. and Thomas, H. C., 1956 Adsorption studies on clay minerals. VI. Alkali ions on attapulgite J. Chem. Phys. 24 993995 10.1063/1.1742726.CrossRefGoogle Scholar
Misono, M., Ochiai, E., Saito, Y. and Yoneda, Y., 1967 A new dual scale for the strength of the Lewis acids and bases with the evaluation of their softness J. Inorg. Nucl. Chem. 29 26852691 10.1016/0022-1902(67)80006-X.CrossRefGoogle Scholar
Norrish, K., (1973) Factors in the weathering of mica to vermiculite: in Proc. of the Int. Clay Conf., Madrid, Spain, June 1972. Serratosa, J. M., et al., eds., Div. de Ciencas, CSIA, Madrid, 417432.Google Scholar
Pearson, R. G., 1963 Hard and soft acids and bases J. Amer. Chem. Soc. 85 35333539 10.1021/ja00905a001.CrossRefGoogle Scholar
Pearson, R. G., 1968 Hard and soft acids and bases, HSAB, part 1: Fundamental principles J. Chem. Ed. 45 581587 10.1021/ed045p581.CrossRefGoogle Scholar
Pearson, R. G., 1987 Recent advances in the concept of hard and soft acids and bases J. Chem. Ed. 64 561567 10.1021/ed064p561.CrossRefGoogle Scholar
Schultz, L. G., 1969 Lithium and potassium absorption, dehydroxylation temperature, and structural water content of aluminous smectites Clays & Clay Minerals 17 115149 10.1346/CCMN.1969.0170302.CrossRefGoogle Scholar
Senkayi, A. L., Dixon, L. B., Hossner, L. R. and Kippen-berger, L. A., 1985 Layer charge evaluation of expandable soil clays by an alkylammonium method Soil Sci. Soc. Amer. J. 49 10541060 10.2136/sssaj1985.03615995004900040052x.CrossRefGoogle Scholar
Shainberg, I., Alperovitch, N. I. and Keren, R., 1987 Charge density and Na-K-Ca exchange on smectites Clays & Clay Minerals 35 6873 10.1346/CCMN.1987.0350109.CrossRefGoogle Scholar
Sherry, H. S., 1979 Ion-exchange properties of the natural zeolite erionite Clays & Clay Minerals 27 231237 10.1346/CCMN.1979.0270309.CrossRefGoogle Scholar
Shirozu, H. and Bailey, S. W., 1966 Crystal structure of a two-layer Mg-vermiculite Amer. Mineral. 51 11241143.Google Scholar
Sposito, G., 1984 The Surface Chemistry of Soils New York Oxford Press.Google Scholar
Sposito, G., Holtzclaw, K. M., Johnston, C. T. and LeVesque, C. S., 1981 Thermodynamics of sodium-copper exchange on Wyoming bentonite at 298 K Soil Sci. Soc. Amer. J. 45 10791084 10.2136/sssaj1981.03615995004500060014x.CrossRefGoogle Scholar
Sterte, J. and Shabtai, J., 1987 Cross-linked smectites. V: Synthesis and properties of hydroxy-silicoaluminum mont-morillonites and fluorhectorites Clays & Clay Minerals 35 429439 10.1346/CCMN.1987.0350603.CrossRefGoogle Scholar
Stucki, J. W., 1981 The quantitative assay of minerals for Fe2+ and Fe3+ using 1, 10-phenanthroline: 2. A photochemical method Soil Sci. Soc. Amer. J. 45 638641 10.2136/sssaj1981.03615995004500030040x.CrossRefGoogle Scholar
Tabikh, A. A. Barshad, I. and Overstreet, R., 1960 Cation-exchange hysteresis in clay minerals Soil Sci. 90 219226 10.1097/00010694-196010000-00003.CrossRefGoogle Scholar
Van Olphen, H. and Fripiat, J. J., 1979 Data Handbook for Clay Materials and Other Non-metallic Minerals .Google Scholar
Weaver, C. E. and Pollard, L. D., 1973 Chemistry of Clay Minerals Amsterdam Elsevier Sci. Publ. Co..Google Scholar
Weir, A. H., 1965 Clay potassium retention in montmo-rillonite Clay Miner. 6 1722 10.1180/claymin.1965.006.1.03.CrossRefGoogle Scholar
Xu, S. and Harsh, J. B., 1990 Monovalent cation selectivity quantitatively modeled according to hard/soft acid/ base theory Soil Sci. Soc. Amer. J. 54 357363 10.2136/sssaj1990.03615995005400020010x.CrossRefGoogle Scholar
Xu, S. and Harsh, J. B., 1990 Hard and soft acid-base model verified for monovalent cation selectivity Soil Sci. Soc. Amer. J. 54 15961601 10.2136/sssaj1990.03615995005400060014x.CrossRefGoogle Scholar