Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-20T17:41:20.942Z Has data issue: false hasContentIssue false

Adsorption Studies on Kaolinites — II Adsorption of Amines

Published online by Cambridge University Press:  01 July 2024

Robert F. Conley
Affiliation:
Georgia Kaolin Research Laboratories, Elizabeth, New Jersey 07207, U.S.A.
Mary K. Lloyd
Affiliation:
Georgia Kaolin Research Laboratories, Elizabeth, New Jersey 07207, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An investigation of the reaction between amines and hydrogen kaolinites having a broad range of crystallinites and particle sizes has been made. Aqueous and non-aqueous adsorption isotherms, conductivity titrations, rheological measurements and sediment volume studies give strong evidence that edge sites are dominantly involved in the reaction and basal surfaces remain essentially unaltered. The acid-base reaction produces a localized adduct rather than an ionized, protonated amine. The amine-hydrate adduct adsorbs with greatly modified geometry.

Résumé

Résumé

Ce travail porte sur l’étude des réactions entre des amines et les formes hydrogène de kaolinites ayant des cristallinités et des tailles particulates très variées. Les isothermes d’adsorption en milieux aqueux et non aqueux, les titrations conductimétriques, les mesures rhéologiques et les études de volume de sédiment montrent avec évidence que les sites de bord sont concernés d’une façon prédominante dans la réaction et que les surfaces basales restent essentiellement non touchées. La réaction acide-base entraîne l’apparition d’une amine protonée, formée plus par une action locale que par une ionisation. Le complexe amine-hydrate formé s’absorbe avec une géométrie profondément modifiée.

Kurzreferat

Kurzreferat

Es wurde eine Untersuchung der Reaktion zwischen Aminen und Wasserstoff-Kaolini-ten mit einem weiten Bereich von Kristalliniten und Teilchengrössen durchgeführt. Wässrige und nichtwässrige Adsorptionsisothermen. Leitfähigkeitstitrationen, Theologische Messungen und Sedimentsvolumenuntersuchungen deuten stark darauf hin, dass in erster Linie Kantenstellen an der Reaktion beteiligt sind und Grundflächen im allgemeinen unverändert bleiben. Die Säure-Basenreaktion ergibt eher ein örtliches Anlagerungsprodukt als ein ionisiertes, protontragendes Amin. Das Amin-hydrat Anlagerungsprodukt adsorbiert mit weitgehend veränderter Geometrie.

Резюме

Резюме

Проведено изучение реакции между аминами и водородными каолинитами, значительно различающимися по кристалличности и величине частиц. Изучение изотерм водной и неводной адсорбции, титрование проводимости, геологические измерения и определение объема осадка служат важным доказательством преимущественного участия в реакции реберных позиций; базальные поверхности существенно не меняются. Кислотно-основная реакция более легко создает локализованный аддукт, чем ионизированный (протонизированный) амин. Амино-гидратный аддукт адсорбирует с весьма видоизмененной геометрией.

Type
Research Article
Copyright
Copyright © 1971, The Clay Minerals Society

References

Betts, J. J. and Pethica, B. A., (1956) The ionization characteristics of monolayers of weak acids and bases Trans. Faraday Soc. 52 1581.CrossRefGoogle Scholar
Bundy, W. M., (1963) U.S. Pat. 3 265.Google Scholar
Conley, R. F. and Althoff, A. C., (1971) J. Colloid Interface Sci. 36 363.Google Scholar
Conley, R. F. and Golding, H. J., (1965) Unpublished data, Georgia Kaolin Company .Google Scholar
Conley, R. F. and Torek, A., (1964) Kaolin Am. Perfumer Cosmet. 79 57.Google Scholar
Farmer, V. C. and Mortland, M. M., (1966) An infrared study of complexes of ethylamine with ethyl ammonium and copper ions in montmorillonite J. Phys. Chem. 69 683.CrossRefGoogle Scholar
Holmes, H. F., Fuller, E. L., Gammage, R. B. and Secoy, C. H., (1968) Effect of irreversibly adsorbed H2O on the character of ThO2 surfaces J. Colloid Interface Sci. 28 421.CrossRefGoogle Scholar
Kauzmann, W., (1957) Quantum Chemistry. New York Academic Press 415.Google Scholar
Kitahara, A. and Williamson, W. O., (1964) Wettability of kaolinite treated with ammonia, methylamine, ethylamine, or their corresponding cations J. Am. Ceram. Soc. 47 313.CrossRefGoogle Scholar
Lloyd, M. K. and Conley, R. F., (1970) Adsorption studies on kaolinites Clays and Clay Minerals 18 37.CrossRefGoogle Scholar
Marshall, C. E., (1949) Colloid Chemistry of the Silicate Minerals. New York Academic Press 195.Google Scholar
Mortland, M. M., (1966) Urea complexes with mont-morillonite: an infrared study Clay Minerals 6 143.CrossRefGoogle Scholar
Mortland, M. M., (1968) Protonation of compounds at clay mineral surfaces Trans. 9th Intl. Cong, of Soil Sci. 1 691.Google Scholar
Nagao, M. and Morimoto, T., (1969) Differential heat of adsorption and entropy of water adsorbed on zinc oxide surface J. Phys. Chem. 73 3809.CrossRefGoogle Scholar
Raman, K. V. and Mortland, M. M., (1969) Proton transfer reactions at clay mineral surfaces Soil Sci. Soc. Am. Proc. 33 313.CrossRefGoogle Scholar
Ross, S. and Olivier, J. P., (1964) On Physical Adsorption. New York Interscience 137.Google Scholar
Schaap, W. B. and Schmidt, F. C., (1970) Unpublished data, Indiana University .Google Scholar
Tahoun, S. A. and Mortland, M. M., (1966) Complexes of montmorillonite with primary, secondary, and tertiary amides —I. Protonation of amides on the surface of montmorillonite Soil Sci. 102 248.CrossRefGoogle Scholar