Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T14:56:08.747Z Has data issue: false hasContentIssue false

The Adsorption of N-Aliphatic Alcohols from Dilute Aqueous Solutions on RNH3-Montmorillonites. Part I. Distribution at Infinite Dilution

Published online by Cambridge University Press:  01 July 2024

Michel S. Stul
Affiliation:
Centrum voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030 Heverlee, Belgium
André Maes
Affiliation:
Centrum voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030 Heverlee, Belgium
Jan B. Uytterhoeven
Affiliation:
Centrum voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030 Heverlee, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The adsorption of butanol, hexanol, and octanol on alkylammonium clays of different chain length is studied. The adsorption at infinite dilution compares to the distribution of alcohol between alkane and water in bulk solution. The interlamellar phase of the montmorillonite acts as a solvent even more reactive than carbon tetrachloride. Hydrogen bonds probably occur between the OH group of the alcohol and the NH3+ group. The exchange of water by alcohol on the interlamellar alkylammonium ion is the major factor in the transfer process.

Резюме

Резюме

Изучалась адсорбция бутанола,гексанола и октанола алкиламмониевы-ми глинами с различной длиной цепи. Адсорбция при бесконечном растворении сравнивается с распределением алкоголя между алкиленом и водой в объемном растворе. Межпластинчатая фаза монтмориллонита действует как растворитель, даже более химически активный,чем четыреххлористый углерод. Водородные связи,возможно,появляются между алкогольной группой ОН и группой NH3+. Замена воды алкоголем в межпластинчатом алкиламмониевом ионе является главным фактором в процессе переноса.

Kurzreferat

Kurzreferat

Die Adsorption von Butanol,Hexanol und Oktanol auf Alkylammo-niumtonerden mit verschiedenen Kettenlängen wurde untersucht. Die Adsorption bei endloser Verdünnung ist mit der Verteilung von Alkohol zwischen Alkan und Wasser in Massenlösungen vergleichbar. Die interlamelare Phase des Montmorilloniten benimmt sich wie ein Lösungsmittel, welches noch reaktiver als Tetrachlorkohlenstoff ist.Wasserstoffbrücken kommen wahrscheinlich zwischen den OH-Gruppen des Alkohols und der NH3+ Gruppen vor.Der Austausch von Wasser durch Alkohol auf den interlamellaren Alkylammoniumionen ist der Hauptfaktor in diesem Übergangsprozeß.

Résumé

Résumé

L'adsorption de butanol,d'hexanol et d'octanol sur des argiles alkylammonium de longueur de chaines differente est étudiée. L'adsorption à dilution infinie peut être comparée à la distribution d'alcool entre l'alkane et l'eau dans la solution totale. La phase interlamellaire de la montmorillonite se comporte comme un solvant plus réactif encore que le tétrachlorure de carbone. Les liaisons d'hydrogène surviennent sans doute entre le groupe OH de l'alcool et le groupe NH3+. L’échange d'eau par l'alcool sur l'ion interlamellaire alkylammoniumest le facteur majeur dans le processus de transfert.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

References

Aragón de la Cruz, F. and Castro Castro, H. (1969) El relieve inter-laminar y la sorcion de moleculas organicas: An. R. Soc. Esp. Fis. Quim. B65, 201208.Google Scholar
Aveyard, R. and Mitchell, R. W. (1968) Heat of solution in water of the liquid methylene group at 25°C: Trans. Faraday Soc. 64, 17571762.CrossRefGoogle Scholar
Aveyard, R. and Mitchell, R. W. (1969) Distribution of n-alkanols between water and n-alkanes: Trans. Faraday Soc. 65, 26452653.CrossRefGoogle Scholar
Barshad, I. (1952) Factors affecting the interlayer expansion of vermiculite and montmorillonite with organic substances: Soil Sci. Soc. Am. Proc. 16, 176182.CrossRefGoogle Scholar
Barrer, R. M. and Millington, A. D. (1967) Sorption and intercrystalline porosity in organo-clays. J. Colloid Interface Sci. 25, 359372.CrossRefGoogle Scholar
Barrer, R. M., Papadopoulos, R. and Rees, L. V. C. (1967) Exchange of sodium in clinoptilolite by organic cations: J. Inorg. Nucl. Chem. 29, 20472063.CrossRefGoogle Scholar
Bissada, K. K., Johns, W. D. and Cheng, F. S. (1967) Cation-dipole interactions in clay organic complexes: Clay Miner. 7, 155166.CrossRefGoogle Scholar
Boruff, C. S. (1959) Report on fusel oil: colorimetric method for quantitative determination of fusel oil in distilled beverages: J. Assoc. Off. Agric. Chem. 42, 331336.Google Scholar
Brindley, G. W. and Ray, S. (1964) Complexes of Ca-montmorillonite with primary monohydric alcohols (clay-organic studies—VIII): Am. Mineral. 49, 106115.Google Scholar
Brindley, G. W., Wiewiora, K. and Wiewiora, A. (1969) Intracrystalline swelling of montmorillonite in some water-organic mixtures (clay-organic studies—XVIII): Am. Mineral. 54, 16351644.Google Scholar
Cremers, A. (1968) Ionic Movement in a Colloidal Environment: N.V. De Vlaamse Drukkerij, Louvain.Google Scholar
Dosch, W. (1967) Interlamellar reactions of tetracalciumaluminate hydrates with water and organic compounds: 15th Conf. Clays & Clay Minerals 27, 273292.CrossRefGoogle Scholar
German, W. and Harding, D. (1969) The adsorption of aliphatic alcohols by montmorillonite and kaolinite: Clay Miner. 8, 213227.CrossRefGoogle Scholar
Giles, C. H. (1970) Sorption and Transport Processes in Soils: S.C.I. Monograph No. 37, Soc. Chem. Ind., London.Google Scholar
Granquist, W. T. and McAtee, J. L. Jr. (1963) The gelation of hydrocarbons by montmorillonite organic complexes: J. Colloid Sci. 18, 409420.CrossRefGoogle Scholar
Hanssens, I., Mullens, J., Deneuter, C. and Huyskens, P. (1968) Affinités comparées des monomolécules d'alcools aliphatiques pour l'eau, le cyclohexane et le tétrachlorure de carbone: Bull. Soc. Chim. Fr. 10, 39423945.Google Scholar
Heydemann, A. and Brindley, G. W. (1968) Selective absorption of n-alkyl alcohol–bromide mixtures by montmorillonites (clay-organic studies—XIV): Am. Mineral. 53, 12321243.Google Scholar
Hoffmann, R. W. and Brindley, G. W. (1960) Adsorption of nonionic aliphatic molecules from aqueous solutions on montmorillonite (clay-organic studies—II): Geochim. Cosmochim. Acta 20, 1529.CrossRefGoogle Scholar
Jordan, J. W. (1949) Organophilic bentonites. I. Swelling in organic liquids: J. Phys. Colloid Chem. 53, 294306.CrossRefGoogle Scholar
Kinoshita, K., Ishikawa, I. and Shinoda, K. (1958) Bull. Chem. Soc. Jpn. 31, 1081.CrossRefGoogle Scholar
Kipling, J. J. (1965) Adsorption from Solutions of Non-electrolytes: A.P., London.CrossRefGoogle Scholar
Komarowsky, A. (1910) Furfurol und einige Aldehyde der aromatischen Reihe als Reagens auf Fuselöl bezw. Isoamylalkohol in rektifizierten Weingeist: Chem. Ztg. 34, 807808.Google Scholar
Laby, R. and Theng, B. K. G. (1964) Second Australian Clay Miner. Conf., Adelaide, 18.Google Scholar
Lagaly, G. and Weiss, A. (1969) Determination of the layer charge in mica-type layer silicates: Proc. Int. Clay Conf. Tokyo 1, 6180.Google Scholar
Lagaly, G. and Weiss, A. (1970) Inhomogeneous charge distributions in mica-type layer silicates: Reunión Hispano-Belga de Minerales de la Arcilla, Madrid, pp. 179187.Google Scholar
Lamberts, L. and Zeegers-Huyskens, Th. (1963) Enthalpie de la liaison hydrogène des complexes amine-alcool: J. Chim. Phys. 60, 435441.CrossRefGoogle Scholar
McAtee, J. L. Jr. and Cheng, F. S. (1967) Differences in apparent interstratification of an organo-montmorillonite dispersed in various organic solvents. I. X-ray diffraction study: Am. Mineral. 52, 13861398.Google Scholar
Mac Ewan, D. M. C. (1955) Interlamellar sorption by clay minerals: Clays Clay Technol. 169, 7885.Google Scholar
Neumann, B. S. and Sansom, K. G. (1970) Laponite clay—a synthetic inorganic gelling agent for aqueous solutions of polar organic compounds: J. Soc. Cosmet. Chem. 21, 237258.Google Scholar
Shinoda, K., Nakagawa, T., Tamamushi, B. and Isemura, T. (1963) Colloidal Surfactants, some Physicochemical properties: A.P., New York.Google Scholar
Somasundaran, P., Healy, T. W. and Fuerstenau, D. W. (1964) Surfactant adsorption at the solid–liquid interface—dependence of mechanism on chain length: J. Phys. Chem. 68, 35623566.CrossRefGoogle Scholar
Stul, M. S. and Mortier, W. J. (1974) The heterogeneity of the charge density in montmorillonites: Clays & Clay Minerals 22, 391396.CrossRefGoogle Scholar
Weiss, A. (1963) Mica-type layer silicates with alkylammonium ions: Clays & Clay Minerals 10, 191223.Google Scholar
Weiss, A. (1966) Modellversuche zur Hydrophobierung hydrophiler Grenzflächen an Schichtsilikaten: Kolloid Z. Z. Polym. 211, 9497.Google Scholar