Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T22:12:27.994Z Has data issue: false hasContentIssue false

Adsorption of Cu Ions onto a 1.10 Phenanthroline-Grafted Brazilian Bentonite

Published online by Cambridge University Press:  01 January 2024

Alexis Tejedor De León
Affiliation:
Laboratório de Tecnologia Mineral e Ambiental, Departamento de Engenharia de Minas, PPGEM-Universidade Federal do Rio Grande do Sul, Av. Oswaldo Aranha 99, 512 Porto Alegre, RS, 90035-190, Brazil
Denise Goulart Nunes
Affiliation:
Laboratório de Tecnologia Mineral e Ambiental, Departamento de Engenharia de Minas, PPGEM-Universidade Federal do Rio Grande do Sul, Av. Oswaldo Aranha 99, 512 Porto Alegre, RS, 90035-190, Brazil
Jorge Rubio*
Affiliation:
Laboratório de Tecnologia Mineral e Ambiental, Departamento de Engenharia de Minas, PPGEM-Universidade Federal do Rio Grande do Sul, Av. Oswaldo Aranha 99, 512 Porto Alegre, RS, 90035-190, Brazil
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The grafting, by chemical adsorption, of molecular 1.10-phenanthroline (OP) onto some Brazilian bentonite (montmorillonites) was studied to improve their adsorptive capacities to remove Cu ions from synthetic wastewater. The quantity of OP adsorbed was 112 mg g−1 of bentonite at pH 8.5 and no significant desorption was detectable in acidic or basic solutions. X-ray diffraction (XRD) spectra show that a complex type-β is formed in which the OP molecules lay inclined in the clay interlayer. After the intercalation of OP, the adsorptive capacities of the natural bentonites increased by a factor of ten. Thus, adsorption of Cu ions, at optimal pH of 8.0±0.5, showed saturation values, which, calculated by the Langmuir model, yielded 110 mg of Cu ions g−1 of bentonite (3.5 meq g−1). The mechanisms of Cu uptake are ion-exchange adsorption onto untreated bentonite and ion exchange plus Cu2+ phenanthroline complexation (chemisorption) on the modified pillared clay. The desorption of Cu ions from OP clay revealed high uptake irreversibility and physical stability (of the adsorbent) either in strongly acidic or basic solutions. Thus, after acid treatment ∼90% of the adsorbed Cu ions continued to be bound onto the OP-modified bentonite surface.

Type
Research Article
Copyright
Copyright © 2003, The Clay Minerals Society

References

Anderson, M.A. Trouw, F.R. and Tam, C.N., (1999) Properties of water in calcium and hexadecyltrimethylammonium-exchanged bentonite Clays and Clay Minerals 47 2835 10.1346/CCMN.1999.0470103.Google Scholar
Appleton, Q. Cox, M. Rus-Romero, J., Gaballah, L. Hager, J. and Solozabal, R., (1999) The removal of metals from aqueous solution using organic extractants adsorbed into clay minerals REWAS’99 — global Symposium on Recycling, Waste Treatment and Clean Technology Spain San Sebastian 2439 2448.Google Scholar
Aragon, F. Cano Ruiz, J. and MacEwan, D.M.C., (1959) β-type interlamellar sorption complexes Nature 183 740 471 10.1038/183740b0.Google Scholar
Bailey, S.E. Olin, T.J. Bricka, R.M. and Adrian, D.D., (1999) A review of potentially low-cost sorbents for heavy metals Water Research 33 24692479 10.1016/S0043-1354(98)00475-8.Google Scholar
Barshad, I., (1952) Factors affecting the interlayer expansion of vermiculite and montmorillonite with organic substances Proceedings of the Soil Science Society of America 16 176182 10.2136/sssaj1952.03615995001600020018x.Google Scholar
Berkheiser, V.E. and Mortland, M.M., (1977) Hectorite complexes with Cu(II) and Fe(II)-1. 10-phenanthroline chelates Clays and Clay Minerals 25 105112 10.1346/CCMN.1977.0250206.Google Scholar
Bower, C.A., (1963) Adsorption of o-phenanthroline by clay minerals and soils Soil Science 95 192195 10.1097/00010694-196303000-00005.Google Scholar
Brinen, J.S. Rosebrook, D.D. and Hirt, R.C., (1963) Phosphorescence of o-phenanthroline The Journal of Physical Chemistry 67 26512655 10.1021/j100806a035.Google Scholar
Chen, J.P. and Wu, S., (2000) Study on EDTA-chelated copper adsorption by granular activated carbon Journal of Chemical Technology and Biotechnology 75 791797 10.1002/1097-4660(200009)75:9<791::AID-JCTB279>3.0.CO;2-C.Google Scholar
Clementz, D.M. and Mortland, M.M., (1974) Properties of reduced charge montmorillonite: tetra-alkylammonium ion exchange forms Clays and Clay Minerals 22 223229 10.1346/CCMN.1974.0220304.Google Scholar
Comans, R.N.J., (1987) Adsorption, desorption and isotopic exchange of cadmium on illite: evidence for complete reversibility Water Research 21 15731576 10.1016/0043-1354(87)90143-6.Google Scholar
Costa, C.A. Schneider, I.A.H. and Rubio, J., (1999) Remoção de metais por subproduto de carvão Saneamento Ambiental 59 5056 (in Portuguese).Google Scholar
De Bussetti, S.G. Ferreiro, E.A. and Helmy, A.K., (1980) Adsorption of 1.10-phenanthroline by some clays and oxides Clays and Clay Minerals 28 149154 10.1346/CCMN.1980.0280212.Google Scholar
De León, A.T., Nunes, D.G. and Rubio, J. (2001) Remoção de ions de metais pesados com bentonitas modificadas. Pp. 464470 in: Proceedings of the VI Southern Hemisphere Meeting on Mineral Technology, Rio de Janeiro, Brazil (in Portuguese).Google Scholar
De Queiroz, E.T., (1977) Geologia das argilas. DNPM. Departamento Nacional de Produção Mineral, Ministério de Minas e Energia, Secretaria de Minas e Metalurgia Principals Depósitos Minerais do Brasil IV–B 93171 (in Portuguese).Google Scholar
Féris, L.A., (2001) Aproveitamento de subprodutos do beneficiamento de carvão mineral na remoção de poluentes por sorção-flotação FAD Brazil Universidad Federal do Rio Grande do Sul Ph.D. thesis.Google Scholar
Féris, L.A. Flores, J.A. Schneider, I.A. and Rubio, J., (2001) Sorption of heavy metals on a coal beneficiation tailing material. I: characterization and mechanisms involved Coal Preparation 21 477495 10.1080/07349340108945632.Google Scholar
Ferreiro, E.A. De Bussetti, S.G. and Helmy, A.K., (1988) Sorption of 8-hydroxyquinoline by some clays and oxides Clays and Clay Minerals 36 6167 10.1346/CCMN.1988.0360108.Google Scholar
Hang, P. and Brindley, W., (1970) Methylene blue absorption by clay minerals: Determination of surface areas and cation exchange capacities (Clay–organic studies XVIII) Clays and Clay Minerals 18 203212 10.1346/CCMN.1970.0180404.Google Scholar
Helmy, A.K. De Bussetti, S.G. and Ferreiro, E.A., (1983) Adsorption of quinoline from aqueous solutions by some clays and oxides Clays and Clay Minerals 31 2936 10.1346/CCMN.1983.0310105.Google Scholar
James, B.R. and Williams, R.J.P., (1961) The oxidation-reduction of some copper complexes Journal of the Chemistry Society 2007 2019.Google Scholar
Lagaly, G., (1981) Characterisation of clays by organic compounds Clay Minerals 16 121 10.1180/claymin.1981.016.1.01.Google Scholar
Lawrie, D.C., (1961) A rapid method for the determination of approximate surface areas of clays Soil Science 92 188191 10.1097/00010694-196109000-00007.Google Scholar
Mortland, M.M. and Berkheiser, V., (1976) Triethylene diamine-clay complexes as matrices for adsorption and catalytic reactions Clays and Clay Minerals 24 6063 10.1346/CCMN.1976.0240202.Google Scholar
Mortland, M.M. Shaobai, S. and Boyd, S.A., (1986) Clay–organic complexes as adsorbents for phenol and chlorophenols Clays and Clay Minerals 34 581585 10.1346/CCMN.1986.0340512.Google Scholar
RohmHaas, , (1989) Ion Exchange and Chelating Resins Philadelphia, Pennsylvania Rohm and Haass, (catalogue).Google Scholar
Rubio, J. and Tessele, F., (1997) Removal of heavy metal ions by adsorptive particulate flotation Minerals Engineering 10 671679 10.1016/S0892-6875(97)00047-2.Google Scholar
Rybicka, E.H. Calmano, W. and Breeger, A., (1995) Heavy metals sorption/desorption on competing clay minerals: an experimental study Applied Clay Science 9 369381 10.1016/0169-1317(94)00030-T.Google Scholar
Schneider, I.A.H. and Rubio, J., (1999) Sorption of heavy metal ion by the nonliving biomass of freshwater macrophytes Environmental Science and Technology 33 22132217 10.1021/es981090z.Google Scholar
Schneider, I.A.H. Rubio, J. and Smith, R.W., (1999) Effect of mining chemicals on biosorption of heavy metal ions onto the biomass of P. Lucens Minerals Engineering 12 255260 10.1016/S0892-6875(99)00003-5.Google Scholar
Schneider, I.A.H. Rubio, J. and Smith, R.W., (2001) Biosorption of metals onto plant biomass: exchange adsorption or surface precipitation? International Journal of Mineral Processing 62 111120 10.1016/S0301-7516(00)00047-8.Google Scholar
Sillén, L.G. and Martell, A., (1971) Stability Constants of Metal-ion Complexes London The Chemical Society 865 pp.Google Scholar
de Souza Santos, P. and Blücher, E., (1975) Estrutura cristalina dos argilominerais Tecnologia de Argilas Brazil Universidade de São Paulo 56 71.Google Scholar
Srinivasan, K.R. and Fogler, H.S., (1990) Use of inorganoorgano-clays in the removal of priority pollutants from industrial wastewaters: adsorption of benzo(a) pyrene and chlorophenols from aqueous solutions Clays and Clay Minerals 38 287293 10.1346/CCMN.1990.0380307.Google Scholar