Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T02:19:10.208Z Has data issue: false hasContentIssue false

Adsorption of Citric Acid by Synthetic Pseudoboehmite

Published online by Cambridge University Press:  02 April 2024

P. Cambier
Affiliation:
Station de Science du Sol, Institut National de la Recherche Agronomique, Route de Saint-Cyr, 78026 Versailles Cédex, France
Garrison Sposito
Affiliation:
Department of Soil Science, University of California, Berkeley, California 94720
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The adsorption of citrate, at 10 4−10−3 M initial concentration, by pseudoboehmite suspended in 0.02 M NaC1O4 was investigated at varying pH. Citrate shows a strong affinity for the pseudoboehmite surface, as seen in the adsorption isotherm at pH 6. Adsorption envelopes of adsorbed citrate vs. pH for a given initial citrate concentration are characteristic for the adsorption of a polyprotic acid by a variable-charge mineral. The envelope data were fit well by the Constant Capacitance Model assuming a ligand-exchange adsorption mechanism, three monodentate surface species of citrate, and a reactive surface OH density of 0.4 mol kg−1. Aqueous speciation calculations suggest that solubility equilibrium with pseudoboehmite was attained at pH > 9 and that particulate or polymeric Al may have existed at 6 < pH < 9. Dissolved Al appeared to reduce the adsorption of citrate at pH < 5.5 via solution complexation reactions.

Type
Research Article
Copyright
Copyright © 1991, The Clay Minerals Society

References

Barrow, N. J., 1987 Reactions with Variable-Charge Soils Boston, Massachusetts Martinus Nijhoff.CrossRefGoogle Scholar
Brucken, S., 1970 Influence des composés organiques solubles sur la pédogénèse en milieu acide Ann. Agron. 21 421452.Google Scholar
Cambier, P. and Sposito, G., 1991 Interactions of citric acid and synthetic hydroxy-aluminum montmorillonite Clays & Clay Minerals 39 158166.CrossRefGoogle Scholar
Coves, J. and Sposito, G., 1986 MICROQL-UCR: A Surface Chemical Adaptation of the Speciation Program MICROQL Riverside niv. of Calif..Google Scholar
Earl, K.D. Syers, J. K. and McLaughlin, J. R., 1979 Origin of the effects of citrate, tartrate and acetate on phosphate sorption by soils and synthetic gels Soil Sci. Soc. Am. J. 43 674678.CrossRefGoogle Scholar
Gastuche, M. C. and Herbillon, A., 1962 Etude des gels d’alumine: Cristallisation en milieu désionisé Bull. Soc. Chim. Fr. 14041413.Google Scholar
Gregor, J. E. and Powell, H. K. M., 1986 Aluminum(III)-citrate complexes: A Potentiometric and 13C N.M.R. study Amt. J. Chem. 39 18511864.Google Scholar
Hayes, K. F., Charalambos, P. and Leckie, J. O., 1988 Modeling ionic strength effects of anion adsorption at hydrous oxide/solution interface J. Colloid Interface Sci. 125 717726.CrossRefGoogle Scholar
Hemingway, B., Sposito, G. and Sposito, G., 1989 Inorganic aluminum bearing solid phases The Environmental Chemistry of Aluminum Boca Raton, Florida CRC Press 5585.Google Scholar
Hsu, P. H., 1967 Effects of salts on the formation of bayerite versus pseudoboehmite Soil Sci. 103 101110.CrossRefGoogle Scholar
Hsu, P. H., Dixon, J. B. and Wedd, S. B., 1989 Aluminum hydroxides and oxyhydroxides Minerals in Soil Environments Madison, Wisconsin Soil Sci. Soc. Am. 331378.Google Scholar
Huang, P.M., 1988 Ionic factors affecting aluminum transformations and the impact on soil and environmental sciences Advan. Soil Sci. 8 178.CrossRefGoogle Scholar
Huang, P. M., Violante, A., Huang, P. M. and Schnitzer, M., 1986 Influence of organic acids on crystallization and surface properties of precipitation products of aluminum Interactions of Soil Minerals with Natural Organics and Microbes Madison, Wisconsin Soil Sci. Soc. Am. 159221.CrossRefGoogle Scholar
Kummert, R. and Stumm, W., 1980 The surface complexation of organic acids on hydrous γA12O3 J. Colloid Interface Sci. 75 373385.CrossRefGoogle Scholar
Martell, A. E. and Smith, R. M., 1977 Critical Stability Constants, Vol. 3 New York Plenum Press.Google Scholar
McBride, M. B., 1982 Organic anion adsorption on aluminum hydroxides: Spin probe studies Clays & Clay Minerals 30 438444.CrossRefGoogle Scholar
Nordstrom, D. K., May, H. M. and Sposito, G., 1989 Aqueous equilibrium data for mononuclear aluminum species The Environmental Chemistry of Aluminum Boca Raton, Florida CRC Press 2953.Google Scholar
Öhman, L. O. and Sjöberg, S., 1983 Equilibrium and structural studies of silicon (IV) and aluminium (III) in aqueous solutions. Part 9: A Potentiometrie study of mono- and poly-nuclear aluminium (III) citrates J. Chem. Soc. Dalton Trans. 25132517.CrossRefGoogle Scholar
Parfitt, R. L., Fraser, A. R., Russell, J. D. and Farmer, V. C., 1977 Adsorption on hydrous oxides II. Oxalate, benzoate and phosphate on gibbsite J. Soil Sci. 28 4047.CrossRefGoogle Scholar
Peryea, F. J. and Kittrick, J. A., 1988 Relative solubility of corundum, gibbsite boehmite, and diaspore at standard state conditions Clays & Clay Minerals 36 391396.CrossRefGoogle Scholar
Pulfer, K., Schindler, P. W., Westall, J. C. and Grauer, R., 1984 Kinetics and mechanism of dissolution of bayerite (γ-Al(OH)3) in HNO3-HF solutions at 298.2 K J. Colloid Interface Sci. 101 554564.CrossRefGoogle Scholar
Rajan, S. S. S., 1977 Sulfate adsorbed on hydrous alumina, ligands displaced, and changes in surface charge Soil Sci. Soc. Am. J. 42 3944.CrossRefGoogle Scholar
Schindler, R. W., Stumm, W. and Stumm, W., 1987 The surface chemistry of oxides, hydroxides and oxide minerals Aquatic Surface Chemistry New York Wiley 83110.Google Scholar
Sposito, G., 1981 The Thermodynamics of Soil Solutions Oxford Clarendon Press.Google Scholar
Sposito, G., 1984 The Surface Chemistry of Soils New York Oxford Univ. Press.Google Scholar
Sposito, G., 1985 Chemical models of inorganic pollutants in soils CRC Critical Rev. Environ. Control 15 124.CrossRefGoogle Scholar
Stumm, W., 1987 Aquatic Surface Chemistry New York Wiley.Google Scholar
Stumm, W., Huang, C. P. and Jenkins, S. R., 1970 Specific chemical interaction affecting the stability of dispersed systems Croatica Chem. Acta 42 223245.Google Scholar
Tettenhorst, R. and Hoffmann, D. A., 1980 Crystal chemistry of boehmite Clays & Clay Minerals 28 373380.CrossRefGoogle Scholar
Traina, S. J., Sposito, G., Bradford, G. R. and Kafkafi, U., 1987 Kinetic study of citrate effects on orthophosphate solubility in an acidic, montmorillonitic soil Soil Sci. Soc. Am. J. 51 14831487.CrossRefGoogle Scholar
Violante, A. and Huang, P. M., 1985 Influence of inorganic and organic ligands on the formation of aluminum hydroxides and oxyhydroxides Clays & Clay Minerals 33 181192.CrossRefGoogle Scholar
Westall, J. and Hohl, H., 1980 A comparison of electrostatic models for the oxide/solution interface Adv. Colloid Interface Sci. 12 265294.CrossRefGoogle Scholar