Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T00:37:44.398Z Has data issue: false hasContentIssue false

Acid Activation of a Ferrous Saponite (Griffithite): Physico-Chemical Characterization and Surface Area of the Products Obtained

Published online by Cambridge University Press:  28 February 2024

M. A. Vicente Rodriguez
Affiliation:
Departamento de Química Inorganica, Facultad de Ciencias, Universidad Nacional de Educatión a Distancia, Senda del Rey, s/n., E-28040-Madrid, (Spain) Departamento de Química Inorgánica, Facultad de Química, Universidad de Salamanca, Plaza de la Merced, s/n., E-37008-Salamanca, (Spain)
M. Suarez Barrios
Affiliation:
Area de Mineralogía y Cristalografia, Departamento de Geología, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced, s/n., E-37008-Salamanca, (Spain)
J. D. Lopez Gonzalez
Affiliation:
Departamento de Química Inorganica, Facultad de Ciencias, Universidad Nacional de Educatión a Distancia, Senda del Rey, s/n., E-28040-Madrid, (Spain)
M. A. Bañares Muñoz
Affiliation:
Departamento de Química Inorgánica, Facultad de Química, Universidad de Salamanca, Plaza de la Merced, s/n., E-37008-Salamanca, (Spain)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A ferrous saponite (griffithite) from Griffith Park (California, USA) was treated with solutions of HCl (0.62, 1.25 and 2.5% by weight) at 25°C for 2, 6, 24 and 48 hours. The resulting solids were characterized by XRD, FT-IR spectroscopy, thermal analyses, SEM, TEM and nitrogen adsorption isotherms at 77 K, showing the destruction of silicate structure by the treatments. The free silica generated by these treatments was digested and determined in all samples. Several samples had specific surface areas up to 250 m2/g, with maximum values which are 10 times higher than the surface area of natural saponite (35 m2/g). A sudden decrease in specific surface areas was observed when free silica was digested, which indicates that free silica makes a very important contribution to the surface area of leached samples.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

References

April, R. H., and Keller, D. M.. 1992 . Saponite and vermiculite in amygdales of the granby basaltic tuff, Connecticut Valley. Clays & Clay Miner. 40: 2231.CrossRefGoogle Scholar
Cetisli, H., and Gedikbey, T.. 1990 . Dissolution kinetics of sepiolite from Eskisehir (Turkey) in hydrochloric and nitric acids. Clay Miner. 25: 207215.CrossRefGoogle Scholar
Charlot, G., 1956. Les Méthodes de la Chimie Analytique. Analyse Quantitative Minérale. Masson et Cie, editeurs. Paris.Google Scholar
Chevalier, S., Franck, R., Lambert, J.-F., Barthomeuf, D., and Suquet, H.. 1992 . Stability of Al-pillared saponites: Evidence for disorganization during storage in air. Clay Miner. 27: 245248.CrossRefGoogle Scholar
De la Calle, C., and Suquet, H.. 1988 . Vermiculite. In: Hydrous Phyllosilicates. Reviews in Mineralogy 19: 455496. Edited by S. W. Bailey. Mineralogical Society of America, Washington.CrossRefGoogle Scholar
Galán, E., Alvarez, A., and Esteban, M. A.. 1986 . Characterization and technical properties of a Mg-rich bentonite. Appl. Clay Sci. 1: 295309.CrossRefGoogle Scholar
Gregg, S. J., and Sing, K. S. W.. 1982 . Adsorption, Surface Area and Porosity. Second Printing. London and New York: Academic Press, 303 pp.Google Scholar
Kodama, H., de Kimpe, C. R., and Dejou, J.. 1988 . Ferrian saponite in a gabbro saprolite at Mont Mégantic. Clays & Clay Miner. 36: 102110.CrossRefGoogle Scholar
López Gónzalez, J. de D., Ramírez Sáenz, A., Rodríguez Reinoso, F., Calahorro, C. Valenzuela, y Herrera, L. Zurita. 1981 . Activación de una sepiolita con disoluciones diluidas de NO3H y posteriores tratamientos térmicos: I. Estudio de la superficie específica. Clay Miner. 16: 103113.CrossRefGoogle Scholar
Mackenzie, R. C., 1970. Simple phyllosilicates based on Gibbsite- and Brucite-like sheets. In: Differential Thermal Analysis, Vol. I. Mackenzie, R. C., ed. London: Academic Press, 497537.Google Scholar
Mendioroz, S., Pajares, J., Benito, I., Pesquera, C., González, F., and Blanco, C.. 1987 . Texture evolution of montmorillonite under progressive acid treatment: Change from H3 to H2 type of hysteresis. Langmuir 3–5: 676681.CrossRefGoogle Scholar
Newman, A. C. D., and Brown, G.. The chemical constitution of clays. In: Chemistry of Clays and Clay minerals. Mineralogical Society Monograph n° 6, Newman, A.C.D., 1987 ed., New York: Wiley Interscience, 1128.Google Scholar
Pesquera, C., González, F., Benito, I., Blanco, C., Mendioroz, S., and Pajares, J.. 1992 . Passivation of a montmorillonite by the silica created in acid activation. J. Mater. Chem. 2: 907911.CrossRefGoogle Scholar
Post, J. L., 1984. Saponite from near Ballarat, California. Clays & Clay Miner. 32: 147153.CrossRefGoogle Scholar
Pruden, G., and King, H. G. C.. 1969 . Scheme of semi-micro analysis for the major elements. Clay Miner. 8: 113.CrossRefGoogle Scholar
Ross, C. S., and Hendricks, S. D.. 1945 . Minerals of the Montmorillonite Groups. U.S. Depart. Int. (Geol. Surv.), Washington DC.Google Scholar
Ross, C. S., 1960. Review of the relationships in the montmorillonite group of clay minerals. Clays & Clay Miner. 7: 225229.CrossRefGoogle Scholar
Schoonheydt, R. A., and Leeman, H.. 1992 . Pillaring of saponite in concentrated medium. Clay Miner. 27: 249252.CrossRefGoogle Scholar
Suquet, H., de la Calle, C., and Pezerat, H.. 1975 . Swelling and structural organization of saponite. Clays & Clay Miner. 23: 19.CrossRefGoogle Scholar
Suquet, H., Chevalier, S., Marcilly, C., and Barthomeuf, D.. 1991 . Preparation of porous materials by chemical activation of the Llano vermiculite. Clay Miner. 26: 4960.CrossRefGoogle Scholar
Usami, H., Tagaki, K., and Sawaki, Y.. 1992 . Regioselective photocyclodimerization of cyclohexenones intercalated on clay layers. Chem. Lett. 1992: 14051408.CrossRefGoogle Scholar
Velde, B., 1985. Clay Minerals: A Physico-Chemical Explanation of Their Occurrence. New York: Elsevier, 427 pp.Google Scholar
Vicente Rodríguez, M. A., 1994. Estudio comparativo de los procesos de activación ácida de sepiolita, saponita y montmorillonita, y de los productos resultantes. Ph.D. thesis, UNED University, Madrid.Google Scholar
Watanabe, T., and Sato, T.. 1988 . Expansion characteristics of montmorillonite and saponite under various relative humidity conditions. Clay Sci., 7: 129138.Google Scholar