Hostname: page-component-669899f699-tpknm Total loading time: 0 Render date: 2025-04-25T02:20:10.487Z Has data issue: false hasContentIssue false

Review of the application of infrared spectroscopy in studies of acid-treated clay minerals

Published online by Cambridge University Press:  06 December 2024

Jana Madejová*
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-845 36 Bratislava, Slovakia
Helena Pálková
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-845 36 Bratislava, Slovakia
*
Corresponding author: Jana Madejová; Email: [email protected]

Abstract

Acid activation of clay minerals is one of the most effective methods for production of materials with increased acidity and porosity. In this review, the benefits of infrared (IR) spectroscopy in studies of acid-treated clay minerals are demonstrated. Protons penetrating into the clay mineral layers evoke structural modifications that can be followed readily by changes in the characteristic absorption bands attributed to the vibrations of the OH and Si–O groups. In the first part of the review the effect of the clay mineral type, composition, layer charge, non-swelling layers, and organo-modification on the dissolution rate is reported. The identification of the acid sites via pyridine adsorption also included. The purpose was to gather the IR results published in previous studies in a single summary paper. In the second part select recent studies reporting the utilization of IR spectroscopy for the characterization of acid-activated clay minerals, mainly applied as catalysts or adsorbents, are discussed. IR spectroscopy as a simple and non-destructive technique deserves attention also today.

Type
Review
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Acar, B.C., & Yuksekdag, Z. (2023). Investigation of chromium (III) adsorption on acid-treated bentonite evaluation of kinetic/thermodynamic data. Water, Air, & Soil Pollution, 234, 716.CrossRefGoogle Scholar
Abdalqadir, M, Gomari, S.R., Pak., T., Hughes, D., & Shwan, D. (2024). A comparative study of acid-activated non-expandable kaolinite and expandable montmorillonite for their CO2 sequestration capacity. Reaction Kinetics Mechanisms and Catalysis, 137, 375398.CrossRefGoogle Scholar
Ali, E.S., Askalany, A.A., Harby, K., Refaat Diab, M., Hussein, B.R.M., & Alsaman, A.S. (2021). Experimental adsorption water desalination system utilizing activated clay for low grade heat source applications. Journal of Energy Storage, 43, 103219.CrossRefGoogle Scholar
Ansari, A., Shahhosseini, S., & Maleki, A. (2023). Eco-friendly CO2 adsorption by activated-nano-clay montmorillonite promoted with deep eutectic solvent. Separation Science and Technology, 58, 12521274.CrossRefGoogle Scholar
Aydin, M.T.A. (2024). A spectroscopic study on the effect of acid concentration on the physicochemical properties of calcined halloysite nanotubes. Journal of the Australian Ceramic Society, 60, 629642.CrossRefGoogle Scholar
Bahranowski, K., Klimek, A., Gaweł, A., Olejniczak, Z., & Serwicka, E. (2022). Rehydration driven acid impregnation of thermally pretreated Ca-bentonite - evolution of the clay structure. Materials, 15, 2067.CrossRefGoogle ScholarPubMed
Balbay, A., Selvitepe, N. & Saka, C. (2021). Fe doped-CoB catalysts with phosphoric acidactivated montmorillonite as support for efficient hydrogen production via NaBH4 hydrolysis. International Journal of Hydrogen Energy, 46, 425438CrossRefGoogle Scholar
Balci, S. (2019). Structural property improvements of bentonite with sulfuric acid activation and a test in catalytic wet peroxide oxidation of phenol. International Journal of Chemical Reactor Engineering, 20180167.Google Scholar
Bishop, J.L., Pieters, C.M., & Edwards, J.O. (1994). Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays and Clay Minerals, 42, 702716.CrossRefGoogle Scholar
Biswas, B., Rashidul Islam, M., Kanti Deb, A., Greenaway, A., Warr, L.N., & Naidu, R. (2023). Understanding iron impurities in Australian kaolin and their effect on acid and heat activation processes of clay. ACS Omega, 8, 55335544.CrossRefGoogle ScholarPubMed
Boudriche, L., Bergaya, F., & Boudjemaa, A. (2023). Effects of clay activation and amine chain length on silica-palygorskite heterostructure properties. Clay Minerals, 58, 1925.CrossRefGoogle Scholar
Breen, C., Madejová, J., & Komadel, P. (1995). Characterisation of moderately acid-treated, size-fractionated montmorillonites using IR and MAS NMR spectroscopy and thermal analysis. Journal of Materials Chemistry, 5, 469474.CrossRefGoogle Scholar
Breen, C., Watson, R., Madejová, J., Komadel, P., & Klapyta, Z. (1997). Acid activated organoclays: preparation, characterization and catalytic activity of acid-treated tetra-alkylammonium exchanged smectites. Langmuir, 13, 64736479.CrossRefGoogle Scholar
Cai, Y.F., Xue, J.Y., & Polya, D.A. (2007). A Fourier transform infrared spectroscopic study of Mg-rich, Mg-poor and acid leached palygorskites. Spectrochimica Acta Part A, 66, 282288.CrossRefGoogle ScholarPubMed
Chryssikos, G.D. (2017). Modern infrared and Raman instrumentation and sampling methods. In Gates, W.P., Klopproge, J.T., Madejová, J., & Bergaya, F. (Eds) Infrared and Raman Spectroscopies of Clay Minerals (pp. 3463). Elsevier, Amsterdam.CrossRefGoogle Scholar
Dehmani, Y., Sellaoui, L., Alghamdi, Y., Lainé, J., Badawi, M., Amhoud, A., Bonilla-Petriciolet, A., Lamhasni, T., & Abouarnadasse, S. (2020). Kinetic, thermodynamic and mechanism study of the adsorption of phenol on Moroccan clay. Journal of Molecular Liquids, 312, 113383.CrossRefGoogle Scholar
El-Aal, M.A., Said, A.E.-A.A., Abdallah, M.H., & Goda, M.N. (2022). Modified natural kaolin clay as an active, selective, and stable catalyst for methanol dehydration to dimethyl ether. Scientific Reports, 12, 9407.CrossRefGoogle Scholar
Erasto, L., Hellar-Kihampa, H., Alphonce Mgani, Q., & Lugwisha, E.H.J. (2023). Comparative analysis of cationic dye adsorption efficiency of thermally and chemically treated Tanzanian kaolin. Environmental Earth Sciences, 82, 101.CrossRefGoogle Scholar
Erdemoğlu, M., Birinci, M., & Uysal, T. (2020). Thermal behavior of pyrophyllite ore during calcination for thermal activation for aluminum extraction by acid leaching. Clays and Clay Minerals, 68, 8999.CrossRefGoogle Scholar
España, V.A.A., Sarkar, B., Biswas, B., Rusmin, R., & Naidu, R. (2019). Environmental applications of thermally modified and acid activated clay minerals: Current status of the art. Environmental Technology & Innovation 13, 383397.CrossRefGoogle Scholar
Farmer, V.C. (1974). The layer silicates. In: Farmer, V.C. (ed) Infrared Spectra of Minerals (pp. 331363). Mineralogical Society, London.CrossRefGoogle Scholar
Fonseca, C.G., Vaiss, V.S., Wypych, F., Diniz, R., & Leitão, A.A. (2018). Investigation of the initial stages of the montmorillonite acid-activation process using DFT calculations. Applied Clay Science, 165, 170178.CrossRefGoogle Scholar
Franco, F., Cecilia, J.A., Pozo, M., Pardo, L., Bellido, E., & García-Sancho, C. (2020). Microwave assisted acid treatment of kerolitic clays from the Neogene Madrid Basin (Spain) and its use in CO2 capture processes. Microporous and Mesoporous Materials, 292, 109749.CrossRefGoogle Scholar
Funes, I.G.A., Peralta, M.E., Pettinari, G.R., Carlos, L., & Parolo, M.E. (2020). Facile modification of montmorillonite by intercalation and grafting: The study of the binding mechanisms of a quaternary alkylammonium surfactant. Applied Clay Science, 195, 105738.CrossRefGoogle Scholar
Gates, W.P., Anderson, J.S., Raven, M.D., & Churchman, G.J. (2002). Mineralogy of a bentonite from Miles, Queensland, Australia and characterization of its acid activation products. Applied Clay Science, 20, 189197.CrossRefGoogle Scholar
Gharbi-Khelifi, H., Jmii, H., Mosbahi, M., Hamdi, S., Hamdi, R., Brahmi, J., Loukil, S., Chamkha, M., Sayadi, S., Aouni, M., Barreiro, A., Fernández-Sanjurjo, M.J., Núnez-Delgado, A., & Alvarez Rodríguez, E. (2023). Microbiological and physicochemical quality enhancement of treated wastewater using raw and chemically modified clays from Sidi Bouzid region, Tunisia. Environmental Research, 239, 117391.CrossRefGoogle Scholar
Hadoudi, N., Charki, A., Ouarghi, H., Salhi., A., Amhamdi, H., & Ahari, M (2023). Sorption of Bisphenol A from aqueous solutions by acid activated bentonite clay. Desalination and Water Treatment, 285, 121128.CrossRefGoogle Scholar
Harvey, C.C., & Lagaly, G. (2006). Conventional applications. In: Bergaya, F., Theng, B.K.G., & Lagaly, G. (eds.). Handbook of Clay Science (pp. 501540) Elsevier, Amsterdam.CrossRefGoogle Scholar
He, S., Zhu, R., Chen, Q., Tang, N., Ji, S., Wei, H., Du, J., Yang, Y., & Zhu, J. (2024). Development of a novel hierarchical porous and hydrophobic silica from montmorillonite for benzene adsorption. Separation and Purification Technology, 329, 125031.CrossRefGoogle Scholar
Huang, G.-Q., Song, Y.-H., Liu, C., Yang, J.-M., Lu, J., Liu, Z.-T., & Liu, Z.-W. (2019). Acid activated montmorillonite for gas-phase catalytic dehydration of monoethanolamine. Applied Clay Science, 168, 116124.CrossRefGoogle Scholar
Johari, N.S.M., Adnan, S.B.R.S., & Ahmad, N. (2020). Novel halloysite based nanoionic Na2ZnSiO4 solid electrolyte: Structural and electrical properties. Ceramics International, 46, 2036920375.CrossRefGoogle Scholar
Johnston, C.J., Pepper, R.A., Martens, W.N., & Couperthwaite, S. (2022). Improvement of aluminium extraction from low-grade kaolinite by iron oxide impurities: Role of clay chemistry and morphology. Minerals Engineering, 176, 107346.CrossRefGoogle Scholar
Komadel, P. (2016). Acid activated clays: Materials in continuous demand. Applied Clay Science, 131, 8499.CrossRefGoogle Scholar
Komadel, P., & Madejová, J. (2006). Acid activation of clay minerals. In: Bergaya, F., Theng, B.K.G., & Lagaly, G. (Eds). Handbook of Clay Science (pp. 263287). Elsevier, Amsterdam.CrossRefGoogle Scholar
Komadel, P., & Madejová, J. (2013). Acid activation of clay minerals. In: Bergaya, F., & Lagaly, G. (Eds.). Handbook of Clay Science, vol. 5A (pp. 385409). Elsevier, Amsterdam.CrossRefGoogle Scholar
Komadel, P., Madejová, J., & Bujdák, J. (2005). Preparation and properties of reduced-charge smectites – A review. Clays and Clay Minerals, 53, 313334.CrossRefGoogle Scholar
Krupskaya, V., Novikova, L., Tyupina, E., Belousov, P., Dorzhieva, O., Zakusin, S., Kim, K., Roessner, F., Badetti, E., Brunelli, A., & Belchinskaya, L. (2019). The influence of acid modification on the structure of montmorillonites and surface properties of bentonites. Applied Clay Science, 172, 110.CrossRefGoogle Scholar
Kwon, S., Kim, Y. & Roh, Y. (2021). Cesium removal using acid- and base-activated biotite and illite. Journal of Hazardous Materials, 401, 123319.CrossRefGoogle ScholarPubMed
Lebovka, N., Goncharuk, O., Klepko, V., Mykhailyk, V., Samchenko, Y., Kernosenko, L., Pasmurtseva, N., Poltoratska, T., Siryk, O., Solovieva, O., & Tatochenko, M. (2022). Cross-linked hydrogels based on PolyNIPAAm and acid-activated Laponite RD: Swelling and tunable thermosensitivity. Langmuir, 38, 57085716.CrossRefGoogle ScholarPubMed
Liu, T., Lo, Sun, Cao, Z., Xue, Y., Lu, X., Yao, C., & Li, X. (2023). Construction of FeIn2S4/Palygorskite nanocomposite for photocatalytic nitrogen fixation coupled with biomass conversion. Journal of Alloys and Compounds, 962, 171181.CrossRefGoogle Scholar
Madejová, J., Bujdák, J., Janek, M., & Komadel, P. (1998). Comparative FT-IR study of the structural modifications during acid treatment of dioctahedral smectites and hectorite. Spectrochimica Acta A, 54, 13971406.CrossRefGoogle Scholar
Madejová, J, Bujdák, J., Petit, S., & Komadel, P. (2000a). Effects of chemical composition and temperature of heating on the infrared spectra of Li- saturated dioctahedral smectites. (I) Mid- infrared region. Clay Minerals, 35, 739751.CrossRefGoogle Scholar
Madejová, J, Bujdák, J., Petit, S., & Komadel, P (2000b). Effects of chemical composition and temperature of heating on the infrared spectra of Li- saturated dioctahedral smectites. (II) Near- infrared region. Clay Minerals, 35, 753761.CrossRefGoogle Scholar
Madejová, J., Pentrák, M., Pálková, H., & Komadel, P. (2009). Near-infrared spectroscopy: a powerful tool in studies of acid treated clay minerals. Vibrational Spectroscopy, 49, 211218.CrossRefGoogle Scholar
Madejová, J., Balan, E., & Petit, S. (2011). Application of vibrational spectroscopy to the characterization of phyllosilicates and other industrial minerals. In: Christidis, G.E. (Ed.). Advances in the Characterization of Industrial Minerals. EMU Notes in Mineralogy 9 (pp. 171226). European Mineralogical Union and the Mineralogical Society of Great Britain and Ireland, London.CrossRefGoogle Scholar
Madejová, J., Pálková, H., & Jankovič, Ľ. (2012). Degradation of surfactant-modified montmorillonites in HCl. Materials Chemistry and Physics, 134, 768776.CrossRefGoogle Scholar
Madejová, J., Pálková, H., & Jankovič, Ľ. (2015). Near-infrared study of the interaction of pyridine with acid-treated montmorillonite. Vibrational Spectroscopy, 76, 2230.CrossRefGoogle Scholar
Madejová, J., Gates, W.P., & Petit, S. (2017). IR spectra of clay minerals. In: Gates, W.P., Klopproge, J.T., Madejová, J., & Bergaya, F. (Eds). Infrared and Raman Spectroscopies of Clay Minerals (pp. 107149). Elsevier, Amsterdam.CrossRefGoogle Scholar
Makó, E., Senkár, Z., Kristóf, J., & Vágvölgyi, V. (2006). Surface modification of mechanochemically activated kaolinites by selective leaching. Journal of Colloid and Interface Science, 294, 362370.CrossRefGoogle ScholarPubMed
Matejdes, M., Hausner, J., Grüner, M., Kaupp, G., & Breu, J. (2020). Absorption pigment cores for pearlescent pigments. Clays and Clay Minerals, 68, 428435.CrossRefGoogle Scholar
Marosz, M., Kowalczyk, A., & Chmielarz, L., (2020a). Modified vermiculites as effective catalysts for dehydration of methanol and ethanol. Catalysis Today, 355, 466475.CrossRefGoogle Scholar
Marosz, M., Kowalczyk, A., Gil, B., & Chmielarz, L. (2020b). Acid-treated clay minerals as catalysts for dehydration of methanol and ethanol. Clays and Clay Minerals, 68, 2337.CrossRefGoogle Scholar
Martin, S.A., Perez, I., & Rivera, A. (2021). Hosting of the antibiotic Vancomycin by bentonite: Characterization and slow release study. Applied Clay Science, 202, 105965.CrossRefGoogle Scholar
Ndé, H.S., Tamfuh, P.A., Clet, G., Vieillard, J., Mbognou, M.T., & Woumfo, E.D. (2019) Comparison of HCl and H2SO4 for the acid activation of a Cameroonian smectite soil clay: palm oil discolouration and landfill leachate treatment. Heliyon, 5, e02926.CrossRefGoogle ScholarPubMed
Murray, H.H. (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, 17, 207221.CrossRefGoogle Scholar
Mustapha, L.S., Yusuff, A.S., & Dim, P.E. (2023). RSM optimization studies for cadmium ions adsorption onto pristine and acid-modified kaolinite clay. Heliyon, 9, 18634.CrossRefGoogle ScholarPubMed
Nouri, N., Tasviri, M., & Ghasamzadeh, H. (2021). Developing an efficient catalyst based on thermal and acid-treated clay for the removal of trace olefins from aromatic compounds. Clays and Clay Minerals, 69, 105116.CrossRefGoogle Scholar
Novák, I., & Číčel, B. (1978). Dissolution of smectites in hydrochloric acid: II. Dissolution rate as a function of crystallochemical composition. Clays and Clay Minerals, 26, 341344.CrossRefGoogle Scholar
Osthaus, B.B. (1956). Kinetic studies on montmorillonite and nontronite by the acid dissolution technique. Clays and Clay Minerals, 4, 301321.Google Scholar
Pajak, M. (2021). Adsorption capacity of smectite clay and its thermal and chemical modification for two anionic dyes: Comparative study. Water, Air, & Soil Pollution, 232, 83.CrossRefGoogle Scholar
Pálková, H., Madejová, J., & Righi, D. (2003). Acid dissolution of reduced-charge Li- and Ni-montmorillonites. Clays and Clay Minerals, 51, 133142.CrossRefGoogle Scholar
Pálková, H., Hronský, V., Jankovič, Ľ., & Madejová, J. (2013). The effect of acid treatment on the structure and surface acidity of tetraalkylammonium-montmorillonites. Journal of Colloid Interface Science, 395, 166175.CrossRefGoogle ScholarPubMed
Pálková, H., Zimowska, M., Jankovič, Ľ., Sulikowski, B., Serwicka-Bahranowska, E.M., & Madejová, J. (2017). Thermal and chemical stability of tetrabutyl-phosphonium and -ammonium exchanged montmorillonite: influence of acid treatment. Applied Clay Science, 138, 6373.CrossRefGoogle Scholar
Pardo-Canales, L., Essih, S., Cecilia, J.A, Domínguez-Maqueda, M., Olmo-Sánchez, M.I., Pozo-Rodríguez, M., & Franco, F. (2020). Modification of the textural properties of palygorskite through microwave assisted acid treatment. Influence of the octahedral sheet composition. Applied Clay Science, 196, 105745.CrossRefGoogle Scholar
Pentrák, M., Madejová, J., & Komadel, P. (2010). Effect of chemical composition and swelling on acid dissolution of 2:1 clay minerals. Philosophical Magazine, 90, 23872397.CrossRefGoogle Scholar
Pentrák, M., Madejová, J., & Komadel, P. (2009). Acid and alkali treatment of kaolins. Clay Minerals, 44, 511523.CrossRefGoogle Scholar
Pentrák, M., Hronský, V., Pálková, H., Uhlík, P., Komadel, P., & Madejová, J. (2018). Alteration of fine fraction of bentonite from Kopernica (Slovakia) under acid treatment: a combined XRD, FTIR, MAS NMR and AES study. Applied Clay Science, 163, 204213.CrossRefGoogle Scholar
Perez, F.M., Santori, G.F., Pompeo, F., & Nichio, N.N. (2022) Silica-resin-bentonite nanocomposite and its application in catalysis. Minerals, 12, 1486.CrossRefGoogle Scholar
Pereira, V.D., Paz, I.D., Gomes, A.L., Leite, L.A, Fechine, P.B.A., & Filho, M.D. (2021). Effects of acid activation on the halloysite nanotubes for curcumin incorporation and release. Applied Clay Science, 200, 105953.CrossRefGoogle Scholar
Phukan, A., Bhorodwaj, S.K., Sharma, P.P., & Dutta, D.K. (2018). Mesoporous aluminosilicate: efficient and reusable catalysts for esterification of sec-butanol with acetic acid. Journal of Porous Materials, 25, 129136.CrossRefGoogle Scholar
Plata, V., Rojas, Ó., & Gauthier-Maradei, P. (2020). Improvement of palm oil biodiesel filterability by treatment with reactivated spent bleaching earth. Fuel, 260, 116198.CrossRefGoogle Scholar
Reddy, C.R., Bhat, Y.S., Nagendrappa, G., & Prakash, B.S.J. (2009). Bronsted and Lewis acidity of modified montmorillonite clay catalysts determined by FT-IR spectroscopy. Catalysis Today, 141, 157160.CrossRefGoogle Scholar
Ritz, M., Zdrálková, J., & Valášková, M. (2014). Vibrational spectroscopy of acid treated vermiculites. Vibrational Spectroscopy, 70, 6369.CrossRefGoogle Scholar
Rouhani, H., Farhadi, F., Akbari Kenari, M., Eskandari, E., & Ramakrishna, S. (2021). Selection of suitable bentonite and the influence of various acids on the preparation of a special clay for the removal of trace olefins from aromatics. Clay Minerals, 56, 185196.CrossRefGoogle Scholar
Roy, A., Butola, B.S., & Joshi, M. (2017). Synthesis, characterization and antibacterial properties of novel nano-silver loaded acid activated montmorillonite. Applied Clay Science, 146, 278285.CrossRefGoogle Scholar
Sangare, S., Belaidi, S., Saoudi, M., Bouaziz, C., Seraghni, N., & Sehili, T. (2024). Iron-TiO2 pillared clay nanocomposites: Eco-friendly solution for photocatalytic removal of organic and pathogen contaminants. Inorganic Chemistry Communications, 160, 111923.CrossRefGoogle Scholar
Sarma, G.K., SenGupta, S., & Bhattacharyya, K. (2018). Adsorption of monoazo dyes (Crocein orange G and Procion red MX5B) from water using raw and acid-treated montmorillonite K10: Insight into kinetics, isotherm, and thermodynamic parameters. Water, Air & Soil Pollution, 229, 312.CrossRefGoogle Scholar
Selim, K.A., Rostom, M., Youssef, M.A., Abdel-Khalek, N.A., Abdel Khalek, M.A., & Hassan, ESRE (2020). Surface modified bentonite mineral as a sorbent for Pb2+ and Zn2+ ions removal from aqueous solutions. Physicochemical Problems of Mineral Processing, 56, 145157.Google Scholar
Siddiqui, M.H.K. (1968). Bleaching Earths. Pergamon Press, London.CrossRefGoogle Scholar
Sidorenko, A.Yu., Kravtsova, A.V., Aho, A., Heinmaa, I., Kuznetsova, T.F, Murzin, D.Yu., & Agabekov, V.E. (2018). Catalytic isomerization of α-pinene oxide in the presence of acid-modified clays. Molecular Catalysis, 448, 1829.CrossRefGoogle Scholar
Sousa, M.U., Rodrigues, A.M., Araujo, M.E.B., Menezes, R.R., Neves, G.A., & Lira, H.L. (2022). Adsorption of sodium diclofenac in functionalized palygorskite clays. Materials, 15, 2708.CrossRefGoogle ScholarPubMed
Stodolak-Zych, E., Rapacz-Kmita, A., Gajek, M., Rózycka, A., Dudek, M., & Kluska, S.E., Rapacz-Kmita, A., Gajek, M., Rózycka, A., Dudek, M., & Kluska, S. (2023). Functionalized halloysite nanotubes as potential drug carriers. Journal of Functional Biomaterials, 14, 167.CrossRefGoogle ScholarPubMed
Swain, R., Nandi, S., Mohapatra, S., & Mallick, S. (2024). Engineered clay-polymer composite for biomedical drug delivery and future challenges: A survey. Current Drag Delivery, 21, 645661.CrossRefGoogle ScholarPubMed
Szczepanik, B., Słomkiewicz, P., Garnuszek, M., Rogala, P., Banaś, D., Kubala-Kukus, A., & Stabrawa, I. (2017). Effect of temperature on halloysite acid treatment for efficient chloraniline removal from aqueous solutions. Clays and Clay Minerals, 65, 155167.CrossRefGoogle Scholar
Temuujin, J., Burmaa, G., Amgalan, J., Okada, K. Jadambaa Ts., & MacKenzie, K.J.D. (2001). Preparation of porous silica from mechanically activated kaolinite. Journal of Porous Materials 8, 233238.CrossRefGoogle Scholar
Tetteh, S., Ofori, A., Quashie, A., Jääskeläinen, S., & Suvanto, S. (2022). Modification of kaolinite/muscovite clay for the removal of Pb(II) ions from aqueous media. Physical Sciences Reviews 8, 35783593.Google Scholar
Thampikannu, R.E., Jiménez, A., Rives, V., Vicente, M.A., Razak, B., & Vellayan, K. (2022) Solvent free selective acylation of phenol by HF–modified saponite catalysts. Applied Clay Science 230, 106695.CrossRefGoogle Scholar
Thiebault, T. (2020). Raw and modified clays and clay minerals for the removal of pharmaceutical products from aqueous solutions: State of the art and future perspectives. Critical Reviews in Environmental Science and Technology 50, 14511514.CrossRefGoogle Scholar
Tomić, Z.P., Ašanin, D., Antić-Mladenović, S., Poharc-Logar, V., & Makreski, P. (2012). NIR and MIR spectroscopic characteristics of hydrophilic and hydrophobic bentonite treated with sulphuric acid. Vibrational Spectroscopy, 58, 95103.CrossRefGoogle Scholar
Turki, T, Frini-Srasra, N, & Srasra, E (2022). Environmental application of acid activated kaolinite-glauconite clay assisted by microwave irradiation. Silicon, 14, 79397949.CrossRefGoogle Scholar
Tyagi, B., Chudasama, C.D., & Jasra, R.V. (2006). Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochimica Acta Part A, 64, 273278.CrossRefGoogle ScholarPubMed
Vicente, M.A., Suárez Barrios, M., López-González, J.D., & Bañares-Muñoz, M.A. (1996). Characterization, surface area, and porosity analyses of the solids obtained by acid leaching of a saponite. Langmuir, 12, 566572.CrossRefGoogle Scholar
Węgrzyn, A., Stawiński, W., Freitas, O., Komędera, K., Błachowski, A., Jęczmionek, Ł, Dańko, T., Mordarski, G., & Figueiredo, S. (2018). Study of adsorptive materials obtained by wet fine milling and acid activation of vermiculite. Applied Clay Science 155, 3749.CrossRefGoogle Scholar
Xiao, C., Lang, F., Xiang, Z., Lin, Y., & Li, D. (2021). Preparation and characterization of quaternary ammonium salt and 3-aminopropyltriethoxysilane-modified sericite mica. Clay Minerals, 56, 8798.CrossRefGoogle Scholar
Yang, Y.X, Zhu, R.L, Chen, Q.Z., Fu, H.Y, He, Q.Z., Zhu, J.X, & He, H.P. (2020). A novel multifunctional adsorbent synthesized by modifying acidified organo-montmorillonite with iron hydroxides. Applied Clay Science, 185, 105420.CrossRefGoogle Scholar
Yassin, J.M., Shiferaw, Y., & Tedla, A. (2022). Application of acid activated natural clays for improving quality of Niger (Guizotia abyssinica Cass) oil. Heliyon, 8, e09241.CrossRefGoogle ScholarPubMed
Younes, H., Kh. El-Etriby, H., & Mahanna, H. (2022). High removal efficiency of reactive yellow 160 dye from textile wastewater using natural and modified glauconite. International Journal of Environmental Science and Technology, 19, 56595674.CrossRefGoogle Scholar
Yu, W.H., Zhu, B., Tong, D.S., Deng, K., Fu, C.P., Huang, T.H., & Zhou, C.H. (2022). Tuning the acidity of montmorillonite by H3PO4-activation and supporting WO3 for catalytic dehydration of glycerol to acrolein. Clays and Clay Minerals, 70, 460479.CrossRefGoogle Scholar
Zahid, I., Ayoub, M., Bin Abdullah, B., Hamza Nazir, M. H., Zulqarnain, , Kaimkhani, M.A., & Sher, F. (2021) Activation of nano kaolin clay for bio-glycerol conversion to a valuable fuel additive. Sustainability, 13, 2631.CrossRefGoogle Scholar
Zeynizadeh, B., Rahmani, S., & Ilkhanizadeh, S. (2019). Strongly proton exchanged montmorillonite K10 (H+-Mont) as a solid acid catalyst for highly efficient and environmental benign synthesis of biscoumarins via tandem Knoevenagel–Michael reaction. Polyhedron, 168, 4856.CrossRefGoogle Scholar
Zhao, Y-H, Cai, Y-F, Zhang, Q-J, Wang, H., & Liu, Y-L (2022). Fe/Acid-montmorillonite as effective Fenton-like catalyst for the removal of methylene blue. Journal of Chemical Technology & Biotechnology, 97, 3163- 3171.CrossRefGoogle Scholar
Zhou, C.H., Li, G.L., Zhuang, X.Y., Wang, P.P., Tong, D.S., Yang, H.M., Lin, C.X., Li, L., Zhang, H., Ji, S.F., & Yu, W.H. (2017). Roles of texture and acidity of acid-activated sepiolite catalysts in gas-phase catalytic dehydration of glycerol to acrolein. Molecular Catalysis, 434, 219231.CrossRefGoogle Scholar
Zhou, Y., Cheng, H., Wei, C., & Zhang, Y. (2021). Effect of acid activation on structural evolution and surface charge of different derived kaolinites. Applied Clay Science, 203, 105997.CrossRefGoogle Scholar
Zhu, J.X., Zhang, P., Wang, Y.B., Wen, K., Su, X.L., Zhu, R.L., He, H.P., & Xi, Y.F. (2018). Effect of acid activation of palygorskite on their toluene adsorption behaviors. Applied Clay Science, 159, 6067.CrossRefGoogle Scholar