Hostname: page-component-55f67697df-xlmdk Total loading time: 0 Render date: 2025-05-10T17:26:35.319Z Has data issue: false hasContentIssue false

Development and characterization of organically grafted clay minerals for the removal of methylene blue from water

Published online by Cambridge University Press:  27 December 2024

Aizhan M. Serikbayeva
Affiliation:
Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal M.Kh. Dulaty Taraz University, Department of Chemistry and Chemical Technology, Taraz 080012, Kazakhstan
Fernanda F. Roman
Affiliation:
Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
Helder T. Gomes
Affiliation:
Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
Marzhan S. Kalmakhanova*
Affiliation:
M.Kh. Dulaty Taraz University, Department of Chemistry and Chemical Technology, Taraz 080012, Kazakhstan
*
Corresponding author: Marzhan S. Kalmakhanova; [email protected]

Abstract

In recent years, water pollution caused by industrial waste has been a major problem throughout the world. To remove harmful impurities from water, using methylene blue (MB) as a model compound, modified clays were used, as they are capable of adsorbing various substances on their surfaces. The modified clays were obtained by grafting dimethyl sulfoxide (DMSO) and triethanolamine (TEOA) in the space between the layers of Shymkent clay. DMSO was first added to the natural clay; TEOA was also added at a temperature of 180°C and then held at that temperature for 2 h. The resulting modified clays were dried at 60°C for 24 h and characterized by X-ray diffraction (XRD), surface area analysis (SAA), Fourier-transform infrared spectroscopy (FT-IR), elemental analysis, and thermogravimetric analysis (DTA and TGA). Natural and modified clays (0.25–2.5 g L–1, pH=1–12, and 50°C) were used to adsorb MB from an aqueous solution at a concentration of 50 mg L–1. Contact with the adsorbent was maintained for 8 h. As much as 95.9% of the MB was removed from the aqueous solution in as little time as 15 min. Adsorption conditions were optimized, and the clay modified with TEAO showed better results than the natural clay (85% for modified clay vs 40% for original clay, at a clay concentration of 0.5 g L–1); significant adsorption was obtained over a wide pH range (>85% from pH 1 to 12).

Type
Original Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahmadi, A., Foroutan, R., Esmaeili, H., & Tamjidi, S. (2020). The role of bentonite clay and bentonite clay@MnFe2O4 composite and their physico-chemical properties on the removal of Cr(III) and Cr(VI) from aqueous media. Environmental Science and Pollution Research, 27, 1404414057. https://doi.org/10.1007/s11356-020-07756-xCrossRefGoogle ScholarPubMed
Ahmed, A., Chaker, Y., Belarbi, E.H., Abbas, O., Chotard, J.N., Abassi, H.B., Van Nhien, A.N., El Hadri, M., & Bresson, S. (2018). XRD and ATR/FTIR investigations of various montmorillonite clays modified by monocationic and dicationic imidazolium ionic liquids. Journal of Molecular Structure, 1173, 653664. https://doi.org/10.1016/j.molstruc.2018.07.039CrossRefGoogle Scholar
Ali, N., Ali, F., Ullah, I., Ali, Z., Duclaux, L., Reinert, L., Lévêque, J.M., Farooq, A., Bilal, M., & Ahmad, I. (2020). Organically modified micron-sized vermiculite and silica for efficient removal of Alizarin Red S dye pollutant from aqueous solution. Environmental Technology & Innovation, 19, 101001. https://doi.org/10.1016/j.eti.2020.101001CrossRefGoogle Scholar
Auerbach, S.M., Carrado, K.A., & Dutta, P.K. (eds) (2004). Handbook of Layered Materials. CRC Press. https://doi.org/10.1201/9780203021354CrossRefGoogle Scholar
Baimuratova, Zh.A., Kalmakhanova, M.S., Shynazbekova, Sh.S., Kybyraeva, N.S., Díaz de Tuesta, J.L., & Gomes, H.T. (2022). MnFe2O4/Zhetisay composite as a novel magnetic material for adsorption of Ni(II). News of the Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences, 2, 5872. https://doi.org/10.32014/2022.2518-170x.160CrossRefGoogle Scholar
Baimuratova, Z., Ermekov, S., Silva, A, Gomes, H., & Kalmakhanova, M. (2024). New magnetic clays MnFe2O4/Shymkent for removal of heavy metals from wastewater. E3S Web of Conferences, 474, 01034. https://doi.org/10.1051/e3sconf/202447401034CrossRefGoogle Scholar
Bardestani, R., Patience, G.S., & Kaliaguine, S. (2019). Experimental methods in chemical engineering: specific surface area and pore size distribution measurements – BET, BJH, and DFT. Canadian Journal of Chemical Engineering, 97, 27812791. https://doi.org/10.1002/cjce.23632CrossRefGoogle Scholar
Brunauer, S., Deming, L.S., Deming, W.E., & Teller, E. (1940). On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society, 62, 17231732. https://doi.org/10.1021/JA01864A025CrossRefGoogle Scholar
Caglar, B. (2012). Structural characterization of kaolinite-nicotinamide intercalation composite. Journal of Molecular Structure, 1020, 4855. https://doi.org/10.1016/j.molstruc.2012.03.061CrossRefGoogle Scholar
Cheng, H., Liu, Q., Zhang, J., Yang, J., & Frost, R.L.J. (2010). The thermal behavior of kaolinite intercalation complexes – a review. Colloids and Surfaces A, 348, 355. https://doi.org/10.1016/j.tca.2012.04.005Google Scholar
Diaz De Tuesta, J. L., Roman, F.F., Marques, V.C., Silva, A.S., Silva, A.P.F., Bosco, T.C., Shinibekova, A.A., Aknur, S., Kalmakhanova, M.S., Massalimova, B.K., Arrobas, M., Silva, A.M.T., & Gomes, H.T. (2022). Performance and modeling of Ni(II) adsorption from low concentrated wastewater on carbon microspheres prepared from tangerine peels by FeCl3-assisted hydrothermal carbonization. Journal of Environmental Chemical Engineering, 10, 108143. https://doi.org/10.1016/j.jece.2022.108143CrossRefGoogle Scholar
Diaz de Tuesta, J.L., Silva, A.M.T., Faria, J.L., & Gomes, H.T. (2018). Removal of Sudan IV from a simulated biphasic oily wastewater by using lipophilic carbon adsorbents. Chemical Engineering Journal, 347, 963971. https://doi.org/10.1016/j.cej.2018.04.105CrossRefGoogle Scholar
Diaz de Tuesta, J.L., Saviotti, M.C., Roman, F.F., Pantuzza, G.F., Sartori, H.J.F., Shinibekova, A., Kalmakhanova, M.S., Massalimova, B.K., Pietrobelli, J.M.T.A., Lenzi, G.G., & Gomes, H.T. (2021) Assisted hydrothermal carbonization of agroindustrial byproducts as an effective step in the production of activated carbon catalysts for wet peroxide oxidation of micro-pollutants. Journal of Environmental Chemical Engineering, 9, 105004. https://doi.org/10.1016/j.jece.2020.105004CrossRefGoogle Scholar
Elkhalifah, A.E.I., Bustam, M.A., Azmi, M.S., & Murugesan, T. (2014a). Carbon dioxide retention on bentonite clay adsorbents modified by mono-, di- and triethanolamine compounds. Advanced Materials Research, 917, 115122. https://doi.org/10.4028/www.scientific.net/amr.917.115CrossRefGoogle Scholar
Elkhalifah, A.E.I., Bustam, M.A., Mohd Shariff, A., Ullah, S., Shimekit, B., & Riaz, N. (2014b). Effects of intercalated mono-, di- and triethanolammonium cations on the structural and surface characteristics of sodium form of bentonite. Applied Mechanics and Materials, 625, 98101. https://doi.org/10.4028/www.scientific.net/amm.625.98CrossRefGoogle Scholar
Elmoubarki, R., Mahjoubi, F.Z., Tounsadi, H., Moustadraf, J., Abdennouri, M., Zouhri, A., Albani, A.E., & Barka, N. (2015). Adsorption of textile dyes on raw and decanted Moroccan clays: kinetics, equilibrium, and thermodynamics. Water Resources and Industry, 9, 1629. https://doi.org/10.1016/j.wri.2014.11.001CrossRefGoogle Scholar
Esvandi, Z., Foroutan, R., Peighambardoust, S.J., Akbari, A., & Ramavandi, B. (2020). Uptake of anionic and cationic dyes from water using natural clay and clay/starch/MnFe2O4 magnetic nanocomposite. Surfaces and Interfaces, 21, 100754. https://doi.org/10.1016/j.surfin.2020.100754CrossRefGoogle Scholar
Fan, H., Zhou, L., Jiang, X., Huang, Q., & Lang, W. (2014). Adsorption of Cu2+ and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite. Applied Clay Science, 95, 150158. https://doi.org/10.1016/j.clay.2014.04.001CrossRefGoogle Scholar
Ferreira, B.F., Ciuffi, K.J., Nassar, E.J., Vicente, M.A., Trujillano, R., Rives, V., & Faria, E.H. (2017). Kaolinite-polymer compounds by grafting of 2-hydroxyethyl methacrylate and 3-(trimethoxysilyl)propyl methacrylate. Applied Clay Science, 146, 526534. https://doi.org/10.1016/j.clay.2017.07.009CrossRefGoogle Scholar
Godarziani, H., Ramezanipour Penchah, H., & Ghaemi, A. (2022). Triethanolamine‐modified montmorillonite clay as a new adsorbent for CO2 capture: characterization, adsorption, and RSM modeling. Journal of the Chinese Chemical Society, 69, 19811996. https://doi.org/10.1002/jccs.202200395CrossRefGoogle Scholar
Gregg, S., & Sing, K. (1982). Adsorption, Surface Area, and Porosity. New York: Academic Press.Google Scholar
Guerra, D.L., Airoldi, C., & Sousa, K.S. (2008). Adsorption and thermodynamic studies of Cu(II) and Zn(II) on organofunctionalized-kaolinite. Applied Surface Science, 254, 5157. https://doi.org/10.1016/j.apsusc.2008.02.017CrossRefGoogle Scholar
Haleem, A., Anum, S., Chen, S.-Q., & Nazar, M. (2023). A comprehensive review on adsorption, photocatalytic and chemical degradation of dyes and nitro-compounds over different kinds of porous and composite materials. Molecules, 28, 1081. https://doi.org/10.3390/molecules28031081CrossRefGoogle ScholarPubMed
Jawad, A.H., Saber, S.E.M., Abdulhameed, A.S., Farhan, A.M., ALOthman, Z.A., & Wilson, L.D. (2023). Characterization and applicability of the natural Iraqi bentonite clay for toxic cationic dye removal: adsorption kinetic and isotherm study. Journal of King Saud University – Science, 35, 102630. https://doi.org/10.1016/j.jksus.2023.102630CrossRefGoogle Scholar
Junior, H.B., da Silva, E., Saltarelli, M., Crispim, D., Nassar, E.J., Trujillano, R., Rives, V., Vicente, M.A., Gil, A., Korili, S.A., de Faria, E.H., & Ciuffi, K.J. (2020). Inorganic–organic hybrids based on sepiolite as efficient adsorbents of caffeine and glyphosate pollutants. Applied Surface Science Advances, 1, 100025. https://doi.org/10.1016/j.apsadv.2020.100025CrossRefGoogle Scholar
Kalmakhanova, M.S., Diaz de Tuesta, J.L., Malakar, A., Gomes, H.T., & Snow, D.D. (2023). Wastewater treatment in central asia: treatment alternatives for safewater reuse. Sustainability, 15, 14949. https://doi.org/10.3390/su152014949CrossRefGoogle Scholar
Karimi, M., Diaz de Tuesta, J.L., Gonçalves, C.N.d.P., Gomes, H.T., Rodrigues, A.E., & Silva, J.A.C. (2020). Compost from municipal solid wastes as a source of biochar for CO2 capture. Chemical Engineering & Technology, 43, 1336 1349. https://doi.org/10.1002/ceat.201900108CrossRefGoogle Scholar
Kausar, A., & Bhatti, H.N. (2013). Adsorptive removal of uranium from wastewater: a review. Journal of Chemical Society of Pakistan, 35, 10411052. https://doi.org/10.2139/ssrn.4524308Google Scholar
Khan, M.I., Khan, H.U., Azizli, K., Sufian, S., Man, Z., Siyal, A.A., Muhammad, N., & Faiz ur Rehman, M. (2017). The pyrolysis kinetics of the conversion of Malaysian kaolin to metakaolin. Applied Clay Science, 146, 152161. https://doi.org/10.1016/j.clay.2017.05.017CrossRefGoogle Scholar
Koteja, A., & Matusik, J. (2015). Di- and triethanolamine grafted kaolinites of different structural order as adsorbents of heavy metals. Journal of Colloid and Interface Science, 455, 8392. https://doi.org/10.1016/j.jcis.2015.05.027CrossRefGoogle ScholarPubMed
Lagaly, G., Ogawa, M., & Dékány, I. (2013). Chapter 10.3 – Clay mineral–organic interactions. In Handbook of Clay Science (eds) Bergaya, F., & Lagaly, G., pp. 435505 Elsevier.CrossRefGoogle Scholar
Letaief, S., & Detellier, C. (2011). Application of thermal analysis for the characterization of intercalated and grafted organo-kaolinite nanohybrid materials. Journal of Thermal Analysis and Calorimetry, 104, 831839. https://doi.org/10.1007/s10973-010-1269-8CrossRefGoogle Scholar
Lorentz, B., Shanahan, N., Stetsko, Y.P., & Zayed, A. (2018). Characterization of Florida kaolin clays using multiple-technique approach. Applied Clay Science, 161, 326333. https://doi.org/10.1016/j.clay.2018.05.001CrossRefGoogle Scholar
Lowell, S., Shields, J.E., Thomas, M.A., & Thommes, M. (2004). Surface area analysis from the Langmuir and BET theories. In Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Particle Technology Series, vol. 16. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2303-3_5CrossRefGoogle Scholar
Machado, G.S., Groszewicz, P.B., Castro, K.A.D.F., Wypych, F.S., & Nakagaki, J. (2012). Catalysts for heterogeneous oxidation reaction based on metalloporphyrins immobilized on kaolinite modified with triethanolamine. Journal of Colloid and Interface Science, 374, 278. https://doi.org/10.1016/j.jcis.2012.02.014CrossRefGoogle ScholarPubMed
Matusik, J., & Wścisło, A. (2014). Enhanced heavy metal adsorption on functionalized nanotubular halloysite interlayer grafted with aminoalcohols. Applied Clay Science, 100, 5059. https://doi.org/10.1016/j.clay.2014.06.034CrossRefGoogle Scholar
Mnasri-Ghnimi, S., & Frini-Srasra, N. (2019). Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Applied Clay Science, 179, 105151, https://doi.org/10.1016/j.clay.2019.105151CrossRefGoogle Scholar
Mukhopadhyay, R., Sarkar, B., Palansooriya, K.N., Dar, J.Y., Bolan, N.S., Parikh, S.J., Sonne, C., & Ok, Y.S. (2021). Natural and engineered clays and clay minerals for the removal of poly- and perfluoroalkyl substances from water: state-of-the-art and future perspectives. Advances in Colloid and Interface Science, 297, 102537. https://doi.org/10.1016/j.cis.2021.102537CrossRefGoogle ScholarPubMed
Mundkur, N., Khan, A.S., Khamis, M.I., Ibrahim, T.H., & Nancarrow, P. (2022). Synthesis and characterization of clay-based adsorbents modified with alginate, surfactants, and nanoparticles for methylene blue removal. Environmental Nanotechnology, Monitoring & Management, 17, 100644). https://doi.org/10.1016/j.enmm.2022.100644CrossRefGoogle Scholar
Nadeem, R., Manzoor, Q., Iqbal, M., & Nisar, J. (2016). Biosorption of Pb(II) onto immobilized and native Mangifera indica waste biomass. Journal of Industrial and Engineering Chemistry, 35, 185194. https://doi.org/10.1016/j.jiec.2015.12.030CrossRefGoogle Scholar
Naeem, H., Bhatti, H.N., Sadaf, S., & Iqbal, M. (2017). Uranium remediation using modified Vigna radiata waste biomass. Applied Radiation and Isotopes, 123, 94101. https://doi.org/10.1016/j.apradiso.2017.02.027CrossRefGoogle ScholarPubMed
Qi, J., Yu, J., Shah, K.J., Shah, D.D., & You, Z. (2023). Applicability of clay/organic clay to environmental pollutants: green way – an overview. Applied Science, 13, 9395. https://doi.org/10.3390/app13169395CrossRefGoogle Scholar
Rahmani, S., Zeynizadeh, B., & Karami, S. (2020). Removal of cationic methylene blue dye using magnetic and anionic-cationic modified montmorillonite: kinetic, isotherm and thermodynamic studies. Applied Clay Science, 184, 105391. https://doi.org/10.1016/j.clay.2019.105391CrossRefGoogle Scholar
Rashid, A., Bhatti, H.N., Iqbal, M., & Noreen, S. (2016). Fungal biomass composite with bentonite efficiency for nickel and zinc adsorption: a mechanistic study. Ecological Engineering, 91, 459471. https://doi.org/10.1016/j.ecoleng.2016.03.014CrossRefGoogle Scholar
Reimbaeva, S.M., Massalimova, B.K., & Kalmakhanova, M.S. (2020). New pillared clays prepared from different deposits of Kazakhstan. Materials Today: Proceedings, 31, 607610. https://doi.org/10.1016/j.matpr.2020.07.532Google Scholar
Ruiz-Rosas, R., García-Mateos, F.J., Gutiérrez, M.C., Rodríguez-Mirasol, J., & Cordero, T. (2019). About the role of porosity and surface chemistry of phosphorus-containing activated carbons in the removal of micropollutants. Frontiers in Materials, 6, 134. https://doi.org/10.3389/fmats.2019.00134CrossRefGoogle Scholar
Saeed, M., Munir, M., Nafees, M., Shah, S.S.A., Ullah, H., & Waseem, A. (2020). Synthesis, characterization and applications of silylation based grafted bentonites for the removal of Sudan dyes: isothermal, kinetic and thermodynamic studies. Microporous and Mesoporous Materials, 291, 109697. https://doi.org/10.1016/j.micromeso.2019.109697CrossRefGoogle Scholar
Serikbayeva, A.M., Kalmakhanova, M.S., Massalimova, B.K., Zharlykapova, R.B., & Bazarbaev, H. (2021). Preparation and physico-chemical characterization of organic modified clays with grafted organoalkoxides. News of the Academy of Sciences of the Republic of Kazakhstan, Series Chemistry and Technology, 56, 6168. https://doi.org/10.32014/2021.2518-1491.78.CrossRefGoogle Scholar
Sharma, P., Borah, D.J., Das, P., & Das, M.R. (2015). Cationic and anionic dye removal from aqueous solution using montmorillonite clay: evaluation of adsorption parameters and mechanism. Desalination and Water Treatment, 57, 83728388. https://doi.org/10.1080/19443994.2015.1021844CrossRefGoogle Scholar
Shoukat, S., Bhatti, H.N., Iqbal, M., & Noreen, S. (2017). Mango stone biocomposite preparation and application for crystal violet adsorption: a mechanistic study. Microporous and Mesoporous Materials, 239, 180189. https://doi.org/10.1016/j.micromeso.2016.10.004CrossRefGoogle Scholar
Silva, A.S., Kalmakhanova, M.S., Massalimova, B.K., Sgorlon, J.G., Diaz de Tuesta, J.L., & Gomes, H.T. (2019). Wet peroxide oxidation of paracetamol using acid activated and Fe/Co-pillared clay catalysts prepared from natural clays. Catalysts, 9, 705. https://doi.org/10.3390/catal9090705CrossRefGoogle Scholar
Sing, K., Everett, D., Haul, R., Moscou, L., Pierotti, R., Rouquerol, J., & Siemieniewska, T. (1985). Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis. Pure and Applied Chemistry, 57, 603619.CrossRefGoogle Scholar
Souhassou, H., Khallouk, K., El Khalfaouy, R., El Gaidoumi, A., Nahali, L., Fahoul, Y., Tanji, K., & Kherbeche, A. (2023). Optimization of a binary dye mixture adsorption by Moroccan clay using the Box-Behnken experimental design. Chemistry Africa, 6, 20112027. https://doi.org/10.1007/s42250-023-00608-4CrossRefGoogle Scholar
Suchithra, P.S., Vazhayal, L, Mohamed, A.P., & Ananthakumar, S. (2012). Mesoporous organic–inorganic hybrid aerogels through ultrasonic assisted sol–gel intercalation of silica–PEG in bentonite for effective removal of dyes, volatile organic pollutants and petroleum products from aqueous solution. Chemical Engineering Journal, 200202, 589600. https://doi.org/10.1016/j.cej.2012.06.083CrossRefGoogle Scholar
Sun, D., Li, B., Li, Y., Yu, C., Zhang, B., & Fei, H. (2011). Characterization of exfoliated/delamination kaolinite. Materials Research Bulletin, 46, 101. https://doi.org/10.1016/j.materresbull.2010.09.031CrossRefGoogle Scholar
Tahir, M.A., Bhatti, H.N., & Iqbal, M. (2016a). Solar red and brittle blue direct dyes adsorption onto Eucalyptus angophoroides bark: equilibrium, kinetics, and thermodynamic studies. Journal of Environmental Chemical Engineering, 4, 24312439. https://doi.org/10.1016/j.jece.2016.04.020CrossRefGoogle Scholar
Tahir, N., Bhatti, H.N., Iqbal, M., & Noreen, S. (2016b). Biopolymers composites with peanut hull waste biomass and application for crystal violet adsorption. International Journal of Biological Macromolecules, 94, 210220. https://doi.org/10.1016/j.ijbiomac.2016.10.013CrossRefGoogle ScholarPubMed
Tahir, M., Iqbal, M., Abbas, M., Tahir, M., Nazir, A., Iqbal, D.N., Kanwal, Q., Hassan, F., & Younas, U. (2017). Comparative study of heavy metals distribution in soil, forage, blood, and milk. Acta Ecologica Sinica, 37, 207212. https://doi.org/10.1016/j.chnaes.2016.10.007CrossRefGoogle Scholar
Teixeira, R.A., Lima, E.C., Benetti, A.D., Naushad, M., Thue, P.S., Mello, B.L., Reis, G.S., Rabiee, N., Franco, D., & Seliem, M.K. (2023). Employ a Clay@TMSPDETA hybrid material as an adsorbent to remove textile dyes from wastewater effluents. Environmental Science & Pollution Research, 30, 8601086024. https://doi.org/10.1007/s11356-023-28568-9CrossRefGoogle Scholar
Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Science of the Total Environment, 717, 137222. https://doi.org/10.1016/j.scitotenv.2020.137222CrossRefGoogle ScholarPubMed
Tripathi, M., Singh, S., Pathak, S., Kasaudhan, J., Mishra, A., Bala, S., Garg, D., Singh, R., Singh, P., Singh, P.K., Shukla, A.K., & Pathak, N. (2023). Recent strategies for the remediation of textile dyes from wastewater: a systematic review. Toxics, 11, 940. https://doi.org/10.3390/toxics11110940CrossRefGoogle ScholarPubMed
Yang, Q., Wang, B., Chen, Y., Xie, Y., & Li, J. (2019). An anionic In(III)-based metal-organic framework with Lewis basic sites for the selective adsorption and separation of organic cationic dyes. Chinese Chemical Letters, 30, 234238. https://doi.org/10.1016/j.cclet.2018.03.023CrossRefGoogle Scholar
Yaseen, D.A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International Journal of Environmental Science and Technology, 16, 11931226. https://doi.org/10.1007/s13762-018-2130-zCrossRefGoogle Scholar
Yuan, P, Southon, P.D., Liu, Z., Green, M.E.R., Hook, J.M., Antill, S.J., & Kepert, C.J. (2008). Functionalization of halloysite clay nanotubes by grafting with aminopropyl triethoxysilane. Journal of Physical Chemistry C, 112, 1574215751. https://doi.org/10.1021/jp805657tCrossRefGoogle Scholar
Zakharova, M.V., Masoumifard, N., Hu, Y., Han, J., Kleitz, F., & Fontaine, F.-G. (2018). Designed synthesis of mesoporous solid-supported Lewis acid–base pairs and their CO2 adsorption behaviors. ACS Applied Materials & Interfaces, 10, 1319913210. https://doi.org/10.1021/acsami.8b00640CrossRefGoogle ScholarPubMed
Zhang, T., Wang, W., Zhao, Y., Bai, H., Wen, T., Kang, S., Song, G., Song, S., & Komarneni, S. (2021). Removal of heavy metals and dyes by clay-based adsorbents: from natural clays to 1D and 2D nano-composites. Chemical Engineering Journal, 420, 127574. https://doi.org/10.1016/j.cej.2020.127574CrossRefGoogle Scholar
Supplementary material: File

Serikbayeva et al. supplementary material

Serikbayeva et al. supplementary material
Download Serikbayeva et al. supplementary material(File)
File 601.3 KB