Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-21T22:02:40.315Z Has data issue: false hasContentIssue false

39K Solid-State NMR Studies of Potassium Tecto- and Phyllosilicates: The In Situ Detection of Hydratable K+ in Smectites

Published online by Cambridge University Press:  28 February 2024

J.-F. Lambert*
Affiliation:
I.N.R.A., Station de Science du Sol, Route de St-Cyr, 78026 Versailles Cedex, France
R. Prost*
Affiliation:
I.N.R.A., Station de Science du Sol, Route de St-Cyr, 78026 Versailles Cedex, France
M. E. Smith*
Affiliation:
Brüker Analytische Messetechnik, GMBH, Silberstreifen — D7512 Rheinstetten 4, FRG
*
1Current address: Laboratoire de Réactivité de Surface et Structure, Tour 54–55, 2ème étage, Université Pierre et Marie Curie, 4, Place Jussieu, 75252, Paris Cedex 05, France
2To whom correspondence should be addressed.
3Current address: CSIRO, Division of Material Science and Technology, Normanby Road, Locked bag 33, Clayton, Victoria 3168, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report the first application of 39K solid-state NMR to the study of tecto- and phyllosilicates. Under high field (11.7 Tesla) and with the application of a spin-echo sequence, informative 39K spectra can be obtained for several compounds of interest to the geologist and the agronomist. Tectosilicates and phyllosilicates can be distinguished from the uncorrected frequency (δCG) of the observed NMR peak. A series of montmorillonites submitted to increasing numbers of wetting and drying cycles was studied in order to discriminate between mobile and “fixed” forms of K+: when the spectra are run on hydrated samples, two different signals are observed corresponding to K+ in different hydration states, and NMR data can be correlated with the amount of exchangeable K+ measured by ion exchange. Thus, it appears that NMR can provide useful information on K fixation complementary to classical chemical methods.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Alma, N C M Hays, G. R., Samoson, A. V. and Lippmaa, E. T., Characterisation of synthetic dioctahedral clays by solid state silicon-29 and aluminum-27 nuclear magnetic spectroscopy Anal. Chem. 1984 56 729733 10.1021/ac00268a031.Google Scholar
Bank, S., Bank, J. F. and Ellis, P. D., Solid state 113Cd nuclear magnetic resonance study of exchanged montmorillonites J. Phys. Chem. 1989 93 48474855 10.1021/j100349a034.Google Scholar
Barron, P. F., Slade, P. and Frost, R. L., Ordering of aluminum in tetrahedral sites in mixed-layer 2:1 phyllosilicates by solid-state high resolution NMR J. Phys. Chem. 1985 89 38803885 10.1021/j100264a023.Google Scholar
Bastow, T. J. and Stuart, S. N., 14N and 39K nuclear quadrupole coupling in KNO3 Z. Naturforsch. 1990 45a 459463.Google Scholar
Conard, J., Structure of water and hydrogen-bonding on clays studied by 7Li and 1H resonance Magn. Res. in Coll, and Interf. Sci., ACS Symp. Ser. 1976 34 8596.Google Scholar
Engelhardt, G. and Michel, D., High Resolution Solid State NMR of Silicates and Zeolites 1987 Chichester J. Wiley & Sons 192193.Google Scholar
Gaultier, J.-P., “Etude d’un mécanisme de fixation du potassium dans les sols: la réorganisation structurale de la montmorillonite. Application à la montmorillonite biionique K-Ca” 1978.Google Scholar
Hendricks, S. B. and Teller, E., X-ray interference in partially ordered lattices J. Chem. Phys. 1942 10 147167 10.1063/1.1723678.CrossRefGoogle Scholar
Herrero, C. P., Sanz, J. and Serratosa, J. M., Tetrahedral cation ordering in layer silicates by 29Si NMR spectroscopy Solid State Comm. 1986 53 2 151154 10.1016/0038-1098(85)90115-2.Google Scholar
Hougardy, J., Stone, W E E and Fripiat, J. J., NMR study of adsorbed water. I. Molecular orientation and protonic motion in the two-layer hydrate of a Na-vermiculite J. Chem. Phys. 1976 64 9 38403851 10.1063/1.432702.CrossRefGoogle Scholar
Kadi-Hanifi, M., Proton nuclear magnetic resonance studies of “one-layer” hydrates of oriented hectorites Clays & Clay Minerals 1980 28 1 6566 10.1346/CCMN.1980.0280110.Google Scholar
Kinsey, R. A., Kirkpatrick, R. J., Hower, J., Smith, K. A. and Oldfield, E., High resolution aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopic study of layer silicates, including clay minerals Amer. Mineral. 1985 70 537548.Google Scholar
Kirkpatrick, R. J., MAS-NMR spectroscopy of minerals and glasses Reviews in Mineralogy 1988 18 340429.Google Scholar
Kunwar, A. C., Turner, G. L. and Oldfield, E. J., Solid-state spin-echo Fourier transform NMR of 39K and 67Zn salts at high field J. Magn. Res. 1986 69 124127.Google Scholar
Laperche, V., Lambert, J.-F. Prost, R. and Fripiat, J. J., High resolution solid-state NMR of exchangeable cations on the interlayer surface of a swelling mica: 23Na, 111Cd and 133Cs-vermiculites J.Phys. Chem. 1990 94 88218831 10.1021/j100388a015.Google Scholar
Lipsicas, M., Raythatha, R. H., Pinnavaia, T. J., Johnson, I. J., Giese, R. F. Jr. Costanzo, P. M. and Robert, J.-L., Silicon and aluminum site distributions in 2:1 layered silicate clays Nature 1984 309 604607 10.1038/309604a0.Google Scholar
Lipsicas, M., Straley, C., Costanzo, P. M. and Giese, R. F. Jr., Static and dynamic structures of water in hydrated kaolinites J. Colloid Interface Sci. 1985 107 1 221230 10.1016/0021-9797(85)90165-1.Google Scholar
Luca, V., Cardile, C. M. and Meinhold, R. H., High resolution multinuclear NMR study of cation migration in montmorillonite Clay Miner. 1989 24 115119 10.1180/claymin.1989.024.1.10.CrossRefGoogle Scholar
Mamy, J., Recherches sur l’hydratation de la montmorillonite: propriétés diélectriques et structure du film d’eau 1968.Google Scholar
Mamy, J., Gaultier, J.-P. and Bailey, S. W., Etude de l’évolution de l’ordre cristallin dans la montmorillonite en relation avec la diminution d’échangeabilité du potassium Proc. Int. Clay Conf, Mexico City, 1975 1975 149155.Google Scholar
Mamy, J. and Gaultier, J.-P., Les phénomènes de diffraction des rayonnements X et électroniques par les réseaux atomiques; application à l’étude de l’ordre cristallin dans les minéraux argileux—II. Evolution structurale de la montmorillonite associée au phénomène de fixation irréversible du potassium Ann. Agron. 1976 27 1 116.Google Scholar
Plançon, A., Besson, G., Gaultier, J.-P. Mamy, J., Tchoubar, C., Mortland, M. M. and Farmer, V. C., Qualitative and quantitative study of a structural reorganisation in montmorillonite after potassium fixation Proc. Int. Clay Conf, Oxford, 1978 1978 Amsterdam Elsevier 4554.Google Scholar
Sanz, J. and Serratosa, J. M., 29Si and 27Al high resolution MAS NMR spectra of phyllosilicates J. Amer. Chem. Soc. 1984 106 47904793 10.1021/ja00329a024.Google Scholar
Sanz, J. and Serratosa, J. M., Distinction of tetrahedrally and octahedrally coordinated Al in phyllosilicates by NMR spectroscopy Clay Miner. 1984 19 113115 10.1180/claymin.1984.019.1.13.Google Scholar
Schmidt, V. H. and Blinc, R., Pulse response in the presence of quadrupolar splitting Lecture Notes, Ampere Summer School II, Yugoslavia 1971 1971 7581.Google Scholar
Soma, M., Tanaka, A., Seyama, H., Hayashi, S. and Hayaizaka, K., Bonding states of sodium in tetrasilicic sodium fluoride micas Preprints of the 9th Int. Clay Conf, Strasbourg, 1989 1989 365.Google Scholar
Taylor, P. C., Baugher, J. F. and Kriz, H. M., Magnetic resonance spectra in polycrystalline solids Chem. Rev. 1975 75 203241 10.1021/cr60294a003.Google Scholar
Thompson, J. G., 29Si and27Al nuclear magnetic resonance spectroscopy of 2:1 clay minerals Clay Miner. 1984 19 229236 10.1180/claymin.1984.019.2.09.Google Scholar
Tinet, D., Faugère, M. P. and Prost, R., 113Cd N.M.R. chemical shift tensor analysis of cadmium-exchanged clays and clay gels J. Phys. Chem. 1991.Google Scholar
Weiss, C. A. Jr. Altaner, S. P. and Kirkpatrick, R. J., High resolution 29Si NMR spectroscopy of 2:1 layer silicates: Correlations among chemical shift, structural distortions, and chemical variations Amer. Mineral. 1987 72 935942.Google Scholar
Weiss, C. A. Jr. Altaner, S. P. and Kirkpatrick, R. J., The structural environment of cations adsorbed onto clays: 133Cs variable temperature MAS-NMR spectroscopic study of hectorite Geochim. Cosmochim. Acta 1990 54 16551669 10.1016/0016-7037(90)90398-5.Google Scholar
Woessner, D. E., An NMR investigation into the range of the surface effects on the rotation of water J. Magn. Res. 1979 39 297308.Google Scholar
Woessner, D. E., Characterisation of clay minerals by 27Al nuclear magnetic resonance spectroscopy Amer. Mineral. 1989 74 203215.Google Scholar