Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-10-05T18:59:29.069Z Has data issue: false hasContentIssue false

2H NMR Study of Hydrogen Bonding in Deuterated Kaolinite

Published online by Cambridge University Press:  28 February 2024

Shigenobu Hayashi
Affiliation:
National Institute of Materials and Chemical Research, Tsukuba, Ibaraki 305, Japan Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Etsuo Akiba
Affiliation:
National Institute of Materials and Chemical Research, Tsukuba, Ibaraki 305, Japan
Ritsuro Miyawaki
Affiliation:
National Industrial Research Institute of Nagoya, Kita-ku, Nagoya 462, Japan
Shinji Tomura
Affiliation:
National Industrial Research Institute of Nagoya, Kita-ku, Nagoya 462, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

2H NMR spectra of synthetic deuterated kaolinite have been collected in the temperature range from 150 K to 350 K. Hydroxyl groups show a Pake doublet pattern with an asymmetry factor of 0. They are almost fixed spatially, and undergo a wobbling motion with increasing temperature. The quadrupole coupling constant is 273 ± 3 kHz at 150 K, which indicates that interlayer hydrogen bonding is relatively weak.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

References

Adams, J. M., 1983. Hydrogen atom positions in kaolinite by neutron profile refinement. Clays & Clay Miner. 31: 352356.CrossRefGoogle Scholar
Akiba, E., Hayakawa, H., Asano, H., Izumi, F., Miyawaki, R., Tomura, S., and Shibasaki, Y.. 1994 . Structure refinement of artificial deuterated kaolinite by Rietveld analysis using Time-of-Flight neutron powder diffraction data. Clays & Clay Miner.: submitted.Google Scholar
Barnes, R. G., 1974. Deuteron quadrupole coupling tensors in solids. Adv. Nucl. Quadrupole Reson. 1: 335355.Google Scholar
Bish, D. L., 1993. Rietveld refinement of the kaolinite structure at 1.5 K. Clays & Clay Miner. 41: 738744.CrossRefGoogle Scholar
Bish, D. L., and Von Dreele, R. B.. 1989 . Rietveld refinement of non-hydrogen atomic positions in kaolinite. Clays & Clay Miner. 37: 289296.CrossRefGoogle Scholar
Butler, L. G., and Brown, T. L.. 1981 . Nuclear quadrupole coupling constants and hydrogen bonding. A molecular orbital study of oxygen-17 and deuterium field gradients in formaldehyde-water hydrogen bonding. J. Am. Chem. Soc. 103: 65416549.CrossRefGoogle Scholar
Costanzo, P. M., and Giese, R. F. Jr. 1990 . Ordered and disordered organic intercalates of 8.4-A, synthetically hydrated kaolinite. Clays & Clay Miner. 38: 160170.CrossRefGoogle Scholar
Hayashi, S., Hayamizu, K., Mashima, S., Suzuki, A., McElheny, P. J., Yamasaki, S., and Matsuda, A.. 1991 . 2D and 1H nuclear magnetic resonance study of deuterated amorphous silicon and partially deuterated hydrogenated amorphous silicon. Jpn. J. Appl. Phys. 30A: 19091914.CrossRefGoogle Scholar
Hayashi, S., Ueda, T., Hayamizu, K., and Akiba, E.. 1992a . NMR study of kaolinite. 1. 29Si, 27Al, and 1H spectra. J. Phys. Chem. 96: 1092210928.CrossRefGoogle Scholar
Hayashi, S., Ueda, T., Hayamizu, K., and Akiba, E.. 1992b . NMR study of kaolinite. 2. 1H, 27Al, and 29Si spin-lattice relaxations. J. Phys. Chem. 96: 1092810933.CrossRefGoogle Scholar
Miyawaki, R., 1994. Hydrothermal synthesis of kaolinite. J. Clay Sci. Soc. Japan 33: 202214.Google Scholar
Miyawaki, R., Tomura, S., Samejima, S., Okazaki, M., Mizuta, H., Maruyama, S., and Shibasaki, Y.. 1991 . Effects of solution chemistry on the hydrothermal synthesis of kaolinite. Clays & Clay Miner. 39: 498508.CrossRefGoogle Scholar
Olejnik, S., Aylmore, L. A. G., Posner, A. M., and Quirk, J. P.. 1968 . Infrared spectra of kaolin mineral-dimethyl sulfoxide complexes. J. Phys. Chem. 72: 241249.CrossRefGoogle Scholar
Olejnik, S., Posner, A. M., and Quirk, J. P.. 1970 . The intercalation of polar organic compounds into kaolinite. Clay Miner. 8: 421434.CrossRefGoogle Scholar
Sidheswaren, P., Bhat, A. N., and Ganguli, P.. 1990 . Intercalation of salts of fatty acids into kaolinite. Clays & Clay Miner. 38: 2932.CrossRefGoogle Scholar
Soda, G., and Chiba, T.. 1969 . Deuteron magnetic resonance study of cupric sulfate pentahydrate. J. Chem. Phys. 50: 439455.CrossRefGoogle Scholar
Thompson, J. G., Uwins, P. J. R., Whittaker, A. K., and Mackinnon, I. D. R.. 1992 . Structural characterization of kaolinite: NaCl intercalate and its derivatives. Clays & Clay Miner. 40: 369380.CrossRefGoogle Scholar
Tomura, S., Shibasaki, Y., Mizuta, H., and Kitamura, M.. 1983 . Spherical kaolinite: Synthesis and mineralogical properties. Clays & Clay Miner. 31: 413421.CrossRefGoogle Scholar
Tomura, S., Shibasaki, Y., Mizuta, H., and Kitamura, M.. 1985 . Growth conditions and genesis of spherical and Platy kaolinite. Clays & Clay Miner. 33: 200206.CrossRefGoogle Scholar
Yesinowski, J. P., and Eckert, H.. 1987 . Hydrogen environments in calsium phosphates. J. Am. Chem. Soc. 109: 62746282.CrossRefGoogle Scholar
Young, R. A., and Hewat, A. W.. 1988 . Verification of the triclinic crystal structure of kaolinite. Clays & Clay Miner. 36: 225232.CrossRefGoogle Scholar