Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T07:23:03.454Z Has data issue: false hasContentIssue false

131I Sorption by Thermally Treated Hydrotalcites

Published online by Cambridge University Press:  28 February 2024

María Teresa Olguín
Affiliation:
Instituto Nacional de Investigaciones Nucleates, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, México, D.F.
Pedro Bosch
Affiliation:
Universidad Autónoma Metropolitana, Iztapalapa, Michoacán y Purísima, A.P. 55-532, Iztapalapa, C.P. 09340, México, D.F.
Dwight Acosta
Affiliation:
Universidad Nacional Autónoma de México, Instituto de Física de la UNAM, Ciudad Universitaria A.P. 70-360, C.P. 04510, México, D.F.
Silvia Bulbulian
Affiliation:
Instituto Nacional de Investigaciones Nucleates, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, México, D.F.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The sorption capacity of hydrotalcite (HT) and its calcined product (CHT) was evaluated for 131I sorption from water solution and it was determined as a function of the calcining temperature. The radionuclide content was determined by γ-spectrometry. Solids were characterized by thermal analysis, X-ray diffraction (XRD), electron microscopy and Brunauer-Emmett-Teller (BET) analysis. For 0.1 M Na I solution, labeled with 131I, sorption capacity was found to be 0.24 meq g−1 (7.2% of the anion exchange capacity, AEC). But, if the sample was previously calcined at 773 K and the HT structure destroyed, the sorption of I increased considerably, up to 2.08 meq g−1 (63% of the AEC) and the HT structure was reconstructed. The 131I sorption at very low concentrations (10−14M) was 0.04 × 10−14 meq of 131I g−1 in the noncalcined HT, but for calcined samples at 773 K, the sorption increased to circa 0.97 × 10−14 meq g−1. Calcination temperature determines the surface area of the resulting mixed oxides, and that property seems to be the most important factor controlling the I sorption. If the calcination temperature was increased to 873 K, the specific surface area of the oxide mixture increased and I sorption increased as well, whereas calcination of HT at 973–1073 K resulted in a low surface area and a low I retention.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

References

Atkins, M. Glasser, F.P., Oversby, V.M. and Brown, P.W., 1990 Encapsulation of radioiodine in cementitious waste forms Proc Mater Res Soc Symp; 1989 1522.CrossRefGoogle Scholar
Cavani, F. Trifiro, F. and Vaccani, A., 1991 Hydrotalcite-type anionic clays: Preparation, properties and applications Catal Today 11 173301 10.1016/0920-5861(91)80068-K.CrossRefGoogle Scholar
Chatelet, L. Bottero, J.Y. Yvon, J. and Bouchelaghen, A., 1996 Competition between monovalent and divalent anions for calcined and uncalcined hydrotalcites: Anion exchange and adsorption sites Colloids Surf A 111 167175 10.1016/0927-7757(96)03542-X.CrossRefGoogle Scholar
Choudhary, U.R. and Pandit, M.Y., 1991 Surface properties of magnesium oxide obtained from magnesium hydroxide Appl Catal 71 265274 10.1016/0166-9834(91)85084-9.CrossRefGoogle Scholar
Hermosin, M.C. Pavlovic, I. Ulibarri, M.A. and Cornejo, J., 1993 Trichlorophenol adsorption on layered double hydroxide: A potential sorbent J Environ Sci Health A 28 18751888.Google Scholar
Hermosin, M.C. Pavlovic, I. Ulibarri, M.A. and Cornejo, J., 1996 Hydrotalcite as sorbent for trinitrophenol sorption capacity and mechanism Water Res 30 171177 10.1016/0043-1354(95)00088-3.CrossRefGoogle Scholar
Kopka, H. Beneke, K. and Lagaly, G., 1988 Anionic surfactants between double metal hydroxide layers J Colloid Interface Sci 123 427436 10.1016/0021-9797(88)90263-9.CrossRefGoogle Scholar
McKenzie, A.L. Fishel, C.T. and Davis, R.J., 1992 Investigation of the surface structure and basic properties of calcined hydrotalcites J Catal 138 547561 10.1016/0021-9517(92)90306-3.CrossRefGoogle Scholar
Misra, C. and Perrotta, J., 1992 Composition and properties of synthetic hydrotalcites Clays Clay Miner 40 145150 10.1346/CCMN.1992.0400202.CrossRefGoogle Scholar
Miyata, S., 1973 Synthesis of new hydrotalcite-like compounds and their physico-chemical properties Chem Lett X 843848 10.1246/cl.1973.843.CrossRefGoogle Scholar
Miyata, S., 1975 The synthesis of hydrotalcite-like compounds and their structures and physico-chemical properties-I: The systems Mg2+-Al3+-NO3 -, Mg2+-Al3+-Cl-, Mg2+-Al3+-ClO4 , Ni2+-Al3+-Cl- and Zn2+Al3+-Cl Clays Clay Miner 23 369375 10.1346/CCMN.1975.0230508.CrossRefGoogle Scholar
Miyata, S., 1980 Physico-chemical properties of synthetic hydrotalcites in relation to composition Clays Clay Miner 28 5056 10.1346/CCMN.1980.0280107.CrossRefGoogle Scholar
Miyata, S., 1983 Anion exchange properties of hydrotalcite-like compounds Clays Clay Miner 31 305311 10.1346/CCMN.1983.0310409.CrossRefGoogle Scholar
Olguín, M.T., 1994 Fijación de uranio y productos de fisión del U235 en arcillas y zeolitas México, D.F. Universidad Autónoma Metropolitana.Google Scholar
Olguín, M.T. Solache-Ríos, M. Iturbe, J.L. Bosch, P. and Bulbulian, S., 1996 Sorption of 239Np and 235U fission products by zeolite Y, Mexican natural erionite and bentonite Sep Sci Technol 31 20212044 10.1080/01496399608001029.CrossRefGoogle Scholar
Oscarson, D.W. Miller, H.G. and Watson, R.L., 1986 An evaluation of potential additives to a clay-based buffer material for the immobilization of I-129 124.Google Scholar
Reichle, W.T., 1985 Catalysis reaction by thermally activated synthesis, anionic. Clay minerals J Catal 94 547557 10.1016/0021-9517(85)90219-2.CrossRefGoogle Scholar
Reichle, W.T., 1986 Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite) Solid State Ionics 22 135141 10.1016/0167-2738(86)90067-6.CrossRefGoogle Scholar
Reichle, W.T. Kang, S.Y. and Fuerhardt, D.S., 1986 The nature of the thermal decomposition of a catalyticaily active anionic clay mineral J Catal 101 352359 10.1016/0021-9517(86)90262-9.CrossRefGoogle Scholar
Rey, F. Fornes, V. and Rojo, J.M., 1992 Thermal decomposition of hydrotalcites J Chem Soc, Faraday Trans 88 22332238 10.1039/FT9928802233.CrossRefGoogle Scholar
Sato, T. Fujita, H. Endo, T. Shimada, M. and Tsunashima, A., 1988 Synthesis of hydrotalcite-like compounds and their physico-chemical properties React Solids 5 219228 10.1016/0168-7336(88)80089-5.CrossRefGoogle Scholar
Sato, T. Kato, K. Endo, T. and Shimada, M., 1986 Preparation and chemical properties of magnesium aluminum oxide solid solutions React Solids 2 253260 10.1016/0168-7336(86)80088-2.CrossRefGoogle Scholar
Sato, T. and Okuwaki, A., 1991 Intercalation of benzenecarboxilate ions into the interlayer of hydrotalcite Solid State Ionics 45 4348 10.1016/0167-2738(91)90101-G.CrossRefGoogle Scholar
Ulibarri, M.A. Hernández, M.J. and Cornejo, J., 1987 Changes in textural properties derived from the thermal decomposition of synthetic pyroaurite Thermochim Acta 113 7986 10.1016/0040-6031(87)88310-7.CrossRefGoogle Scholar