Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T12:26:08.610Z Has data issue: false hasContentIssue false

Research on Evolution of Clay Minerals and Argillaceous and Siliceous Neoformation

Published online by Cambridge University Press:  01 January 2024

Georges Millot
Affiliation:
Université de Strasbourg Laboratoire de Géologie et Laboratoire de Physicochimie des Sols, France
Jacques Lucas
Affiliation:
Université de Strasbourg Laboratoire de Géologie et Laboratoire de Physicochimie des Sols, France
Raymond Wey
Affiliation:
Université de Strasbourg Laboratoire de Géologie et Laboratoire de Physicochimie des Sols, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The following recent work is reviewed.

In the Triassic basin of the Jura detrital illite changes into chlorite (chlorite and chloritie mixed layers) toward the middle of the basin.

In the profiles of podzolic soils and podzols, illite and chlorite change, through illite— vermiculite and chlorite-vermiculite stages, into vermiculite.

In Cambrian sandstones of the Sahara two successive diagenetic changes have taken place: early postdepositional kaolinization, and illitization by salt waters.

Neoformation of aluminomagnesian clays in the alkaline sediments of the Eocene basins in Africa produces a sedimentary and geochemical sequence of montmorillonite, attapulgite and sepiolite.

When siliceous neoformation is produced by crystal growth, the growth is regular in the production of quartz, and irregular or hindered in the formation of chalcedony or opal-cristobalite.

Kaolinite has been synthesized at low temperatures in dilute solutions.

Transformations of triphormic clay minerals in the hydrosphere consist of a progressive expansion of layers. Environment controls the equilibrium between interlayer cations and adjacent layers. Siliceous and argillaceous neoformation consists of organization of silica tetrahedrons; this organization depends on the environment and especially on the environmental cations. Transformation by diagenesis is more intense and allows direct passage from illite to kaolinite.

Type
General Sessions
Copyright
Copyright © Clay Minerals Society 1961

References

Alexander, Gt. B., Heston, W. M. and Iler, R. K. (1954) The solubility of amorphous silica in water: J. Phys. Chem., v. 58, pp. 453455.CrossRefGoogle Scholar
Bonifas, M. (1958) Contribution à l'étude géochimique de l'altération latéritique: Mém. Serv. Carte Géol. Als. Lorr., no. 17, p. 159.Google Scholar
Bradley, W. F. (1940) The structural scheme of attapulgite: Amer. Min., v. 25, pp. 405410.Google Scholar
Brauner, K. and Preisinger, A. (1956) Struktur und Entstehung des Sepioliths: Tcher- maks Min. Pet. Mitt., Bd. 6, pp. 120140.Google Scholar
Camez, Th., Franc dø Ferrière, P. J. J., Lucas, J. and Millot, G. (1960) Sur l'importance de la vermiculite dans certains sols tempérés et dans les dépôts du Quaternaire ancien: C.B. Acad. Sci., t. 250, no. 18, pp. 30383041.Google Scholar
Capdecome, L. and Kulbicki, G. (1954) Argiles et gîtes phosphatés de la région de Thiès (Sénégal): Bull. Soc. fr. Min., v. 77, pp. 500518.Google Scholar
Cayeux, L. (1929) Les roches siliceuses: Mém. Serv. Carte Géol. France, Paris.Google Scholar
Correns, C. W. and Nagelschmidt, G. (1933) Ueber Faserbau und optische Eigenschaften von Chalzedon: Z. Krist., v. 85, pp. 199213.Google Scholar
Dapples, E. C. (1959) The behavior of silica in diagenesis: in Silica in Sediments, Soc. Econ. Paleontologists and Mineralogists, spec. pub. 7, pp. 3654.Google Scholar
Elouard, P. (1959) Etude géologique et hydrogéologique des formations sédimentaires du Guebla Mauritanien et de la vallée du Sénégal: Thesis, Sciences, Paris.Google Scholar
Flörke, O. W. (1955) Zur Frage des Hochcristobalit in Opalen, Bentoniten und Gläsern: Neues Jahrb. f. Min., Monatshefte, Heft 10, pp. 217223.Google Scholar
Flörke, O. W. (1961) Untersuchungen an amorphen und mikrokristallinem SiO2: Silicates industriels, September 1961, pp. 424427.Google Scholar
Folk, R. L. and Weaver, C. E. (1952) A study of the texture and composition of chert: Amer. J. Science, v. 250, pp. 498510.CrossRefGoogle Scholar
Fuechtbauer, H, and Goldschmidt, H. (1959) Die Tonminerale der Zechstein-formation: Beiträge zur Min. und Petrog., Bd. 6, pp. 320345.Google Scholar
Grim, R. E., Droste, J. B. and Bradley, W. F. (1960) A mixed-layer clay mineral associated with an evaporite: in Clays and Clay Minerals, v. 8, Pergamon Press, New York, pp. 228236.CrossRefGoogle Scholar
Honeyborne, D. B. (1951) The clay minerals in the Keuper Marl: Clay Minerals Bull., v. 1, pp. 150157.CrossRefGoogle Scholar
Jeannette, A. and Lucas, J. (1955) Sur l'extension au Maroc des niveaux à chlorite dans les argiles du Permo-Trias: N. Serv. Géol. Maroc., t. 12, pp. 129134.Google Scholar
Krauskopf, K. B. (1956) Dissolution and precipitation of silica at low temperatures: Geochim. et Cosmochim. Acta, v. 10, pp. 126.CrossRefGoogle Scholar
Krauskopf, K. B. (1959) The geochemistry of silica in sedimentary environments: in Silica in Sediments, Soc. Econ. Paleontology and Mineralogy, spec. pub. 7, pp. 419.Google Scholar
Kulbieki, G. (1959) High temperature phases in sepiolite, attapulgite and saponite: Airier. Min., v. 44, pp. 752764.Google Scholar
Kulbicki, G. and Millot, G. (1960) L'évolution de la fraction argileuse des grès pétroliers cambro-ordoviciens du Sahara central: Bull. Serv. Carte Géol. Als. Lorr., t. 13, pp. 147156.CrossRefGoogle Scholar
Kulbicki, G. and Millot, G. (this Volume) Diagenesis of clays in sedimentary and petroliferous series.Google Scholar
Levin, I. and Ott, E. (1932) The crystallinity of opals and the existence of high temperature cristobalite at room temperature: Amer. Chem. J., v. 54, pp. 828829.CrossRefGoogle Scholar
Lippmann, F. (1956) Clay minerals from the Röt member of the Triassic near Göttingen, Germany: J. Sed. Petrology, v. 26, pp. 125139.CrossRefGoogle Scholar
Lombard, A. (1953) Les rythmes sédimentaires et la sédimentation générale: Bev. I.F.P., v. 8, spec, no., pp. 945.Google Scholar
Lucas, J. and Bronner, A. M. (1961) Evolution des argiles sédimentaires dans le bassin triasique du Jura français: Bull. Serv. Carte Géol. Als. Lorr., t. 14.CrossRefGoogle Scholar
Martin Vivaldi, J. L. and Cano Ruiz, J. (1956) Contribution to the study of sepiolite: II. Some considerations regarding the mineralogical formula: in Clays and Clay Minerals, Nat. Acad. Sci.—Nat. Res. Council, pub. 456, pp. 173176.Google Scholar
Martin Vivaldi, J. L. and MacEwan, D. M. C. (1957) Triassic chlorites from the Jura and the Catalan coastal range: Clay Minerals Bull., v. 3, pp. 177183.CrossRefGoogle Scholar
Midgley, H. G. (1951) Chalcedony and flint: Geol. Mag., v. 88, pp. 179184.CrossRefGoogle Scholar
Millot, G. (1960) Silice, silex, silicifìcations et croissance des cristaux: Bull. Serv. Carte Géol. Als. Lorr., t. 13, pp. 129146.CrossRefGoogle Scholar
Millot, G. and Camez, T. (this Volume) Genesis of vermiculite and mixed layered vermiculite in the evolution of the soils of France.Google Scholar
Millot, Ct., Elouard, P., Lucas, J. and Slansky, M. (1960) Une séquence sédimentaire et géochimique de minéraux argileux: montmorillonite, attapulgite, sépiolite: Bull. Groupe Fr. des Argiles, t. 12, pp. 7783.CrossRefGoogle Scholar
Millot, G., Radier, H. and Bonitas, M. (1957) La sédimentation argileuse à attapulgite et montmorillonite: Bull. S.G.F., t. 7, fase. 4/5, pp. 425455.CrossRefGoogle Scholar
Millot, G., Radier, H., Muller-Feuga, R., Defossez, M. and Wey, R. (1959) Sur la géochimie de la silice et les silicifications sahariennes: Bull. Serv. Carte Géol. Als. Lorr., t. 12, fasc. 2, pp. 315.CrossRefGoogle Scholar
Nagy, B. and Bradley, W. F. (1955) The structural scheme of sepiolite: Amer. Min., v. 40, pp. 885892.Google Scholar
Okamoto, G., Okura, T. and Goto, K. (1957) Properties of silica in water: Geochim. et Cosmochim. Acta, v. 12, pp. 123132.CrossRefGoogle Scholar
Pelto, C. R. (1956) A study of chalcedony: Amer. J. Science, v. 254, pp. 3250.CrossRefGoogle Scholar
Rinne, F. (1924) Röntgenographische Untersuchung an einigen feinzerteilten Mineralen, Kunstprodukten und dichten Gesteinen: Z. Krist., v. 60, pp. 5569.Google Scholar
Slansky, M. (1959) Contribution à l'étude géologique du bassin sédimentaire côtier du Dahomey et du Togo: Thesis, Sciences, Nancy.CrossRefGoogle Scholar
Slansky, M., Camez, Th. and Millot, G. (1959) Sédimentation argileuse et phosphatée au Dahomey: Bull. S.G.F·, 7th ser., t. 1, n°. 2, p. 150.CrossRefGoogle Scholar
Siffert, B. and Wey, R. (1961) Sur la synthèse de la kaolinite à la température ordinaire: C.R. Acad. Sci., t. 253, no. 1, pp. 142145.Google Scholar
Sosman, R. B. (1927) The Properties of Silica: The Chemical Catalog, New York.Google Scholar
Visse, L. (1954) La sédimentation argileuse des dépôts marins tertiaires de l'W sénégalais: C.B. Som. S.G.F., 6th ser., t. 4, pp. 2729.Google Scholar
Washburn, E. W. and Navias, L. (1922) Relation of chalcedony to other forms of silica: Proc. Nat. Acad. Sci., v. 8, p. 1.CrossRefGoogle ScholarPubMed
Weaver, C. E. (1958) The effects and geologic significance of potassium "fixation" by expandable clay minerals derived from museovite, biotite, chlorite and volcanic material: Amer. Min., v. 43, pp. 839861.Google Scholar