Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T08:46:55.773Z Has data issue: false hasContentIssue false

Interlayering of Expansible Layer Silicates in Soils by Chemical Weathering

Published online by Cambridge University Press:  01 January 2024

M. L. Jackson*
Affiliation:
Department of Soil Science, University of Wisconsin, Madison, Wisconsin, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Interlayering of 2: 1 layer silicates varies as a function of chemical weathering from the simple, homogeneous K or Na interlayers of micas to the heterogeneous systems of mica intercalated with expanded 2: 1 layer silicates. “Frayed edge” type of weathering at dislocation planes of mica is collated with K release and preferential cation-exchange uptake of K relative to Ca by such expansible layer silicate systems; mica islands maintain alignment of the silica sheet cavities, which facilitates recapture of lattice K. Intercalation of the expanded 2: 1 layer silicates with alumina interlayers appears to be a characteristic function of chemical weathering in soils, with the formation of 2: 1–2: 2 intergrades not only of 14 Å spacing but also of swelling 18 Å types that give small 12, 14, 18 Å and higher spacing peaks (along with the 10 Å peak) at 550°C. Interlayer precipitates appear to be characteristic of soil clays, contrasting with “pure” minerals of deposits developed in less “open” environments than those of soils. The “2: 2 lattice building” phenomenon in expansible 2: 1 layer silicates relates to layer charge density and crystal size, and frequently tends to inhibit the formation of free gibbsite in soil chemical weathering so long as there are expansible layer silicates present to become intercalated with aluminum hydroxide—a weathering phenomenon that may be called an “antigibbsite effect”. Accumulation of alumina (possibly with some iron, magnesium, and allophane) as interlayers in 2: 1 minerals of soils is seen as a genetic stage in the 2: 2 → 1: 1 weathering sequence through which kaolinite and halloysite develop in soils.

Type
Symposium on Clay Mineral Transformation
Copyright
Copyright © The Clay Minerals Society 1962

References

Aguilera, N. E. and Jackson, M. L. (1953) Iron oxide removal from soils and clays: Soil Sci. Soc. Amer. Proc., v. 17, pp. 359364, v. 18, pp. 233 and 350.CrossRefGoogle Scholar
Alexander, L. T., Hendricks, S. B. and Nelson, R. A. (1939) Minerals present in soil colloids II. Estimation in some representative soils: Soil Sci., v. 48, pp. 273279.CrossRefGoogle Scholar
Andrew, R. W., Jackson, M. L., and Wada, Koji (1960) Intersalation as a technique for differentiation of kaolinite from chloritic minerals by X-ray diffraction: Soil Sci. Soc. Amer. Proc., v. 24, pp. 422424.CrossRefGoogle Scholar
Barshad, I. (1948) Vermiculite and its relation to biotite as revealed by base exchange reactions, X-ray analyses, differential thermal curves, and water content: Amer. Min., v. 33, pp. 655678.Google Scholar
Barshad, I. (1960) Significance of the presence of exchangeable magnesium ions in. acidified clays: Science, v. 131, pp. 988990.CrossRefGoogle ScholarPubMed
Bradley, W. F. (1955) Structural irregularities in hydrous magnesium silicates: in Clays and Clay Minerals, Natl. Acad. Sci.-Natl. Res. Council, pub. 395, pp. 94102.Google Scholar
Bragg, W. L. (1937) Atomic Structure of Minerals: Cornell Univ. Press, Ithaca, New York, pp. 292.Google Scholar
Bray, R. H. (1937) Chemical and physical changes in soil colloids with advancing development in Illinois soils: Soil Sci., v. 43, pp. 114.CrossRefGoogle Scholar
Brindley, G. W. and Gillery, F. H. (1954) A mixed-layer kaolinite-chlorite structure: in Clays and Clay Minerals, Natl. Acad. Sci.-Natl. Res. Council, pub. 327, pp. 349353.Google Scholar
Brown, B. E. and Jackson, M. L. (1958) Clay-mineral distribution in the Hiawatha sandy soils of northern Wisconsin: in Clays and Clay Minerals, Natl. Acad. Sci.- Natl. Res. Council, pub. 566, pp. 213226.Google Scholar
Brown, G. (1953) The dioctahedral analogue of vermiculite: Clay Min. Bull., v. 2, pp. 6469.CrossRefGoogle Scholar
Brown, G. and Norrish, K. (1952) Hydrous micas: Min. Mag., v. 29, pp. 929932.Google Scholar
Brydon, J. E., Clark, J. S., and Osborne, V. (1961) Dioctahedral chlorite: Canadian Min., v. 6, pp. 595609.Google Scholar
Correns, C. W. (1961) The experimental chemical weathering of silicates: Clay Min. Bull., v. 4, pp. 249265.CrossRefGoogle Scholar
DeMumbrum, L. E. (1959) Exchangeable potassium levels in vermiculite and potassium- depleted micas and implications relative to potassium levels in soils: Soil Sci. Soc. Amer. Proc., v. 23, pp. 192194.CrossRefGoogle Scholar
Dixon, J. B. and Jackson, M. L. (1959) Dissolution of interlayers from intergradient soil clays after preheating at 400°C: Science, v. 129, pp. 16161617.CrossRefGoogle Scholar
Dixon, J. B. and Jackson, M. L. (1960) Mineralogical analysis of soil clays involving vermiculite—chlorite—kaolinite differentiation: in Clays and Clay Minerals, 8th Conf., Pergamon Press, pp. 274286.CrossRefGoogle Scholar
Dixon, J. B. and Jackson, M. L. (1962) Properties of intergradient chlorite-expansible layer silicates of soils: Soil Sci. Soc. Amer. Proc., v. 26, pp. 358362.CrossRefGoogle Scholar
Droste, J. B. (1956) Alteration of clay minerals by weathering in Wisconsin tills: Geol. Soc. Amer. Bull., v. 67, pp. 911918.CrossRefGoogle Scholar
Dyal, R. S. and Hendricks, S. B. (1952) Formation of mixed layer minerals by potassium fixation in montmorillonite: Soil Sci. Soc. Amer. Proc., v. 16, pp. 4548.CrossRefGoogle Scholar
Edelman, C. H. and Favejee, J. C. (1940) On the crystal structure of montmorillonite and halloysite: Z. Krist., v. 102, pp. 417431.Google Scholar
Erhart, H. (1956) La genèse des sols en tant que phénomène géologique: Masson et Cie, Paris 6, France.CrossRefGoogle Scholar
Ferguson, J. A. (1954) Transformations of clay minerals in black earths and red loams of basaltic origin: Austral. J. Agric. Res., v. 5, pp. 98108.Google Scholar
Frederiekson, A. F. and Reynolds, R. C. Jr. (1960) Geoehemical method for determining paleosalinity: in Clays and Clay Minerals, 8th Conf., Pergamon Press, pp. 203213.CrossRefGoogle Scholar
Glass, H. D. (1958) Clay mineralogy of Pennsylvanian sediments in southern Illinois: in Clays and Clay Minerals, Natl. Acad. Sci.-Natl. Res. Council, pub. 566, pp. 227241.Google Scholar
Glenn, R. C. (1960) Chemical weathering of layer silicate minerals in loess-derived Loring silt loam of Mississippi: Trans. 7th Cong. Int. Soc. Soil Sci., v. 4, pp. 523531.Google Scholar
Glenn, R. C., Jackson, M. L., Hole, F. D., and Lee, G. B. (1960) Chemical weathering of layer silicate clays in loess-derived Tama silt loam of southwestern Wisconsin: in Clays and Clay Minerals, 8th Conf., Pergamon Press, pp. 6383.CrossRefGoogle Scholar
Grim, R. E. and Johns, W. D. (1954) Clay mineral investigation of sediments in the northern Gulf of Mexico: in Clays and Clay Minerals, Natl. Acad. Sci.-Natl. Res. Council, pub. 327, pp. 81103.Google Scholar
Gruner, J. W. (1934) Structure of vermiculites and their collapse by dehydration: Amer. Min., v. 19, pp. 557575.Google Scholar
Harrison, J. L. and Murray, H. H. (1959) Clay mineral stability and formation during weathering: in Clays and Glay Minerals, 6th Conf., Pergamon Press, pp. 203213.Google Scholar
Hendricks, S. B. and Teller, E. (1942) X-ray interference in partially ordered layer silicates: J. Chem. Phys., v. 10, pp. 147167.Google Scholar
Hensel, D. R. and White, J. L. (1960) Time factor and the genesis of soils on early Wisconsin till: in Clays and Clay Minerals, 7th Conf., Pergamon Press, pp. 200215.Google Scholar
Hofmann, U., Endell, K., and Wilm, D. (1933) Struktur und quellung von montmorillonit: Z. Krist., v. 86, pp. 304348.Google Scholar
Hutcheson, T. B. Jr., Lewis, R. J., and Seay, W. A. (1959) Chemical and clay mineralogical properties of certain Memphis catena soils of western Kentucky: Soil Sci. Soc. Amer. Proc., v. 23, pp. 474478.CrossRefGoogle Scholar
Jackson, M. L. (1959) Frequency distribution of clay minerals in major great soil groups as related to the factors of soil formation: in Clays and Clay Minerals, 6th Conf., Pergamon Press, pp. 133143.Google Scholar
Jackson, M. L. (1960) Structural role of hydronium in layer silicates during soil genesis: Trans. 7th Cong. Int. Soc. Soil Sci., v. 2, pp. 445455.Google Scholar
Jackson, M. L. (1962) Significance of kaolinite intersalation in clay mineral analysis: in Clays and Clay Minerals, 9th Conf., Pergamon Press, pp. 424429.CrossRefGoogle Scholar
Jackson, M. L. (1963) Aluminium bonding in soils: a unifying principle in soil science: Soil Sci. Soc. Amer. Proc., v. 27, pp. 110.CrossRefGoogle Scholar
Jackson, M. L., Hseung, Y., Corey, R. B., Evans, E. J. and Vanden Heuvel, R. C. (1952). Weathering sequence of clay-size minerals in soils and sediments II. Chemical weathering of layer silicates: Soil Sci. Soc. Amer. Proc., v. 16, pp. 36.CrossRefGoogle Scholar
Jackson, M. L. and Sherman, G. D. (1953) Chemical weathering of minerals in soils: Advances in Agronomy, Academic Press, New York, v. 5, pp. 219318.Google Scholar
Jackson, M. L., Tyler, S. A., Willis, A. L., Bourbeau, G. A. and Pennington, R. P. (1948) Weathering sequence of clay-size minerals in soils and sediments I. Fundamental generalizations: J. Phys. Colloid Chem., v. 52, pp. 12371260.CrossRefGoogle Scholar
Jackson, M. L., Whittig, L. D., and Pennington, R. P. (1950) Segregation procedure for the mineralogical analysis of soils: Soil Sci. Soc. Amer. Proc., ν.14, pp. 7781.CrossRefGoogle Scholar
Jackson, M. L., Whittig, L. D., Vanden Heuvel, R. C., Kaufman, A. and Brown, B. E. (1954) Some analyses of soil montmorin, vermiculite, mica, chlorite, and inter- stratified layer silicates: in Clays and Clay Minerals, Natl. Acad. Sci.-Natl. Res. Council, pub. 327, pp. 218240.Google Scholar
Jasmund, K. and Riedel, D. (1961) Untersuchungen des tonigen Zwischenmittels im Hauptbuntsandstein der Nordeifel: Bull. Geol. Inst. Univ. Uppsala, v. 40, pp. 247257.Google Scholar
Klages, M. G. and White, J. L. (1957) A chlorite-like mineral in Indiana soils: Soil Sci. Soc. Amer. Proc., v. 21, pp. 1620.CrossRefGoogle Scholar
Kunze, G. W., Templin, E. H., and Page, J. B. (1955) The clay mineral composition of representative soils from five geological regions of Texas: in Clays and Clay Minerals, Natl. Acad. Sci.-Natl. Res. Council, pub. 395, pp. 373383.Google Scholar
Loughnan, F. C., Grim, R. E., and Vernet, J. (1962) Weathering of some Triassic shales in the Sydney area: J. Geol. Soc. Austral., v. 8, pp. 245257.CrossRefGoogle Scholar
MacEwan, D. M. C. (1949) Some notes on the recording and interpretation of X-ray diagrams of soil clays: J. Soil Sci., v. 1, pp. 90103.CrossRefGoogle Scholar
Marel, H. W. van der (1954) Potassium fixation in Dutch soils: mineralogical analyses: Soil Sci., v. 78, pp. 163179.CrossRefGoogle Scholar
Marshall, C. E. (1935) Layer lattices and the base-exchange clays: Z. Krist., v. 91, pp. 433449.Google Scholar
Mehra, O. P. and Jackson, M. L. (1959) Constancy of the sum of mica unit cell potassium surface and interlayer sorption surface in vermiculite-illite clays: Soil Sci. Soc. Amer. Proc., v. 23, pp. 101105.CrossRefGoogle Scholar
Milford, M. H. and Jackson, M. L. (1962) Illite content and size distribution in relation to potassium availability in some soils of North Central United States: Agron. Abstracts, American Society of Agronomy, Madison, Wisconsin, pp. 21.Google Scholar
Mortland, M. M. and Gieseking, J. E. (1951) Influence of the silicate ion on potassium fixation: Soil Sci., v. 71, pp. 381385.CrossRefGoogle Scholar
Murray, H. H. and Leininger, R. K. (1956) Effect of weathering on clay minerals: in Clays and Clay Minerals, Natl. Acad. Sci.-Natl. Res. Council, pub. 456, pp. 340347.Google Scholar
Norrish, K. (1954) The swelling of montmorillonite: Disc. Faraday Soc., v. 18, pp. 120134.CrossRefGoogle Scholar
Page, J. B. and Baver, L. D. (1940) Ionic size in relation to fixation of cations by colloidal clays: Soil Sci. Soc. Amer. Proc., v. 4, pp. 150155.CrossRefGoogle Scholar
Pennington, R. P. and Jackson, M. L. (1948) Segregation of the clay minerals of poly- component soil clays: Soil Sci. Soc. Amer. Proc., v. 12, pp. 452457.CrossRefGoogle Scholar
Polzer, W. L. (1961) A preliminary study of the solubility of kaolinite at low temperature and pressure: in Clays and Clay Minerals, 10th Conf., (in press).Google Scholar
Radoslovich, E. W. (1960) The structure of museovite, KAl2(Si3Al)O10(OH)2: Acta Cryst., v. 13, pp. 919932.CrossRefGoogle Scholar
Ragland, J. L. and Coleman, N. T. (1960) The hydrolysis of aluminum salts in clay and soil systems: Soil Sci. Soc. Amer. Proc., v. 24, pp. 457460.CrossRefGoogle Scholar
Rich, C. I., Seatz, L. F., and Kunze, G. W. (Review editors) (1959) Certain properties of selected southeastern United States soils and mineralogical procedures for their study: Southern Regional Bulletin 61, Va. Agr. Exp. Sta., Blacksburg, Va.Google Scholar
Rich, C. I. (1960) Aluminum in interlayers of vermiculite: Soil Sci. Soc. Amer. Proc., v. 24, pp. 2632.CrossRefGoogle Scholar
Rich, C. I. and Obenshain, S. S. (1955) Chemical and clay mineral properties of a Red- Yellow Podzolic soil derived from muscovite schist: Soil Sci. Soc. Amer. Proc., v. 19, pp. 334339.CrossRefGoogle Scholar
Sand, L. B. (1956) On the genesis of residual kaolins: Amer. Min., v. 41, pp. 2840.Google Scholar
Sawhney, B. L. (1960) Weathering and aluminum interlayers in a soil catena: Hollis-Charlton-Sutton-Leicester: Soil Sci. Soc. Amer. Proc., v. 24, pp. 221226.CrossRefGoogle Scholar
Sawhney, B. L. and Jackson, M. L. (1958) Soil montmorillonite formulas: Soil Sci. Soc. Amer. Proc., v. 22, pp. 115118.CrossRefGoogle Scholar
Schmehl, W. R. and Jackson, M. L. (1956) Interstratification of layer silicates in two soils clays: in Clays and Clay Minerals, Natl. Acad. Sci.-Natl. Res. Council, pub. 456, pp. 423428.Google Scholar
Schwertmann, U. (1962a) Eigenschaften und Bildung aufweitbarer (quellbarer) Dreischicht-Tonminerale in Böden aus Sedimenten: Beitrage zur Mineralogie und Petrographie, v. 8, pp, 199-209.Google Scholar
Schwertmann, U. (1962b) Die selektive Kationensorption der Tonfraktion einiger Böden aus Sedimenten: Z. Pflanzenernähr. Düng., Bodenl·., v. 97, pp. 925.CrossRefGoogle Scholar
Shen, M. J. and Rieh, C. I. (1962) Aluminum fixation in montmorillonite: Soil Sci. Soc. Amer. Proc., v. 26, pp. 3336.CrossRefGoogle Scholar
Slaughter, M. and Milne, I. H. (1960) The formation of chlorite-like structures from montmorillonite: in Clays and Clay Minerals, 7th Conf., Pergamon Press, pp. 114124.Google Scholar
Stephen, I. and MacEwan, D. M. C. (1951) Some chloritie clay minerals of unusual type: Clay Min. Bull., v. 1, pp. 157162.CrossRefGoogle Scholar
Tamura, T. (1957) Identification of the 14 A clay mineral component: Amer. Min., v. 42, pp. 107110.Google Scholar
Theisen, A. A., Webster, G. R., and Harward, M. E. (1959) The occurrence of chlorite and vermiculite in the clay fraction of three British Columbia soils: Canadian J. Soil Sci., v. 39, pp. 244251.CrossRefGoogle Scholar
Truog, E. and Jones, R. J. (1938) Fate of soluble potash applied to soils: J. Ind. Eng. Chem., v. 80, pp. 882885.CrossRefGoogle Scholar
Walker, G. F. (1949) The decomposition of biotite in the soil: Min. Mag., v. 28, pp. 693703.Google Scholar
Wear, J. I. and White, J. L. (1951) Potassium fixation in clay minerals as related to crystal structure: Soil Sci., v. 71, pp. 114.CrossRefGoogle Scholar
Weaver, C. E. (1956) The distribution and identification of mixed-layer clays in sedimentary rocks: Amer. Min., v. 41, pp. 202221.Google Scholar
Weaver, C. E. (1958) The effects and geologic significance of potassium "fixation" by expandable clay minerals derived from muscovite, biotite, chlorite, and volcanic material: Amer. Min., v. 43, pp. 839861.Google Scholar
Weiss, Armin (1958) Uber das Kationenaustauschvermögen der Tonminerale II: Der Kationenaustausch bei den Mineralen der Glimmer-, Vermikulit- und Montmoril- lonit-gruppe: Z. anorg. allg. Chemie, v. 297, pp. 258286.CrossRefGoogle Scholar
Weiss, Armin, Mehler, A., and Hofmann, U. (1956) Cation exchange and innercrystalline swelling capacity of the minerals of the mica group: Z. Naturforschg., v. lib, pp. 435438.Google Scholar
White, J. L. (1951) Transformation of illite into montmorillonite: Soil Sci. Soc. Amer. Proc., v. 15, pp. 129133.CrossRefGoogle Scholar
Whittig, L. D. and Jackson, M. L. (1956) Mineral content and distribution as indexes of weathering in the Omega and Ahmeek soils of Northwestern Wisconsin: in Clays and Clay Minerals, Natl. Acad. Sci.-Natl. Res. Council, pub. 456, pp. 362371.Google Scholar