Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T22:14:24.011Z Has data issue: false hasContentIssue false

Argillization in the Cochiti Mining District, New Mexico

Published online by Cambridge University Press:  01 January 2024

Wayne M. Bundy
Affiliation:
Department of Geology, Indiana University, Bloomington, Indiana, USA
Haydn H. Murray*
Affiliation:
Department of Geology, Indiana University, Bloomington, Indiana, USA
*
1Present address : Georgia Kaolin Company, Elizabeth, New Jersey.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Volcanic and intrusive rocks (mainly andesite and monzonite) of Tertiary age are associated with gold- and silver-bearing quartz veins. Hydrothermal alteration took place in two stages. The first and less intense alteration stage is associated with economic mineralization; metallization during the second and more intense stage is limited to pyrite.

Alteration zones from the vein outward include: (1) dickite, (2) illite—kaolinite, (3) vermiculite—halloysite, and (4) chlorite—montmorillonite. Mixed-layer associations of 2:1 clay minerals are abundant and represent transitions between discrete clay minerals. Apparent occurrence of allophane in the illite-kaolinite zone indicates that amorphous aluminum silicates are intermediate phases in transitions from 2: 1 to 1: 1 clay minerals.

Alteration of ferromagnesian minerals and plagioclase resulted largely in the formation of 2: 1 clay mineral types. Orthoclase is altered chiefly to illite and kaolinite. Dickite and quartz are end products of the most intense alteration in the area.

Chemical analyses of the altered rocks in general show a decrease in basic ions toward the vein. Less significant changes are shown by acidic ions. Analyses of illites indicate that substitution of K by Na, Fe, Ca and Mg has taken place near the vein as shown by an overall decrease in KNa,KFe,KCa$\frac{K}{Na}, \frac{K}{Fe}, \frac{K}{Ca}$ and KMg$\frac{K}{Mg}$ ratios. Both sodium and potassium seem to be instrumental in the formation of well-developed illite crystals.

Alteration stages operative in the Cochiti district were developed by the action of solutions probably ranging in pH from 4 to 10. Alteration zones were formed penecontemporaneously with gradual outward migration of the least intense zones.

Type
Article
Copyright
Copyright © Clay Minerals Society 1957

References

Barth, T. F. W. (1955) Presentation of rook analyses: J. Geol., v. 63, pp. 348363.CrossRefGoogle Scholar
Bastin, E. S. (1926) The problem of the natural reduction of sulfates: Amer. Assoc. Petrol. Geol. Bull., v. 10, p. 1270.Google Scholar
Bradley, W. F. (1954) x-Ray diffraction criteria for the characterization of chloritic material in sediments: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council, pub. 327, pp. 324334.Google Scholar
Brindley, G. W. (1955) Stevensite, a montmorillonite-type mineral showing mixed-layer characteristics: Amer. Min., v. 40, pp. 239247.Google Scholar
Brindley, G. W. and Gillery, F. H. (1954) A mixed-layer kaolin-chlorite structure: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council, pub. 327, pp. 349353.Google Scholar
Burbank, W. S. (1950) Problems of wall-rock alteration in shallow volcanic environments: Colo. Sch. Mines Quarterly, v. 45, pp. 286316.Google Scholar
Butler, J. R. (1954) The geochemistry and mineralogy of rock weathering (2) The Nordmarke area, Colo: Geochim. Cosmochim. Acta, v. 6, pp. 268281.CrossRefGoogle Scholar
Callaghan, Eugene (1948) Endellite deposits in Gardner Mine Ridge, Lawrence County, Indiana: Indiana Dept. Cons., Geol. Survey, Bull. 1, 47 pp.Google Scholar
Callière, S., Hénin, S. and Mériaux, S. (1948) Transformation expérimentale d'une montmorillonite en une phyllite à 10Å type illite: C. B. Acad. Sci. Paris, v. 226, pp. 680681.Google Scholar
Correns, C. W. (1949) Einführung in die Mineralogie: Springer-Verlag, Berlin, 414 pp.Google Scholar
Earley, J. W., Brindley, G. W., McVeagh, W. J. and Van den Heuvel, R. C. (1956) A regularly interstratifled montmorillonite-chlorite: Amer. Min., v. 41, pp. 258267.Google Scholar
Ewell, R. H. and Insley, H. (1935) Hydrothermal synthesis of kaolinite, dickite, beidellite and nontronite: J. Bes. Nat. Bur. Stand., v. 15, pp. 173186.CrossRefGoogle Scholar
Faust, G. T. and Murata, K. J. (1953) Stevensite, redefined as a member of the montmorillonite group: Amer. Min., v. 38, pp. 973987.Google Scholar
Fenner, C. N. (1936) Bore hole investigations in Yellowstone Park: J. Geol., v. 44, pp. 225315.CrossRefGoogle Scholar
Goldich, S. S. (1938) A study in rock weathering: J. Geol., v. 46, pp. 1758.CrossRefGoogle Scholar
Goldschmidt, V. M. (1937) The principles of distribution of chemical elements in minerals and rocks: J. Amer. Chem. Soc., pp. 655673.Google Scholar
Gottschalk, V. H. and Buehler, E. A. (1912) Oxidation of sulfides: Econ. Geol., v. 7, pp. 1634.Google Scholar
Grim, R. E. (1934) The pétrographie study of clay minerals—a laboratory note: J. Sed. Pet., v. 4, pp. 4546.Google Scholar
Grim, R. E. (1951) Method and application of differential thermal analysis: Ann. N. Y. Acad. Sci., v. 53, pp. 10311053.CrossRefGoogle Scholar
Grim, R. E. (1953) Clay Mineralogy: McGraw-Hill, New York, 384 pp.Google Scholar
Grim, R. E., Bray, R. H. and Bradley, W. F. (1937) The mica in argillaceous sediments: Amer. Min., v. 22, pp. 813829.Google Scholar
Grim, R. E. and Johns, W. D. (1954) Clay mineral investigation of sediments in the northern Gulf of Mexico: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council pub. 327, pp. 81103.Google Scholar
Gruner, J. W. (1944) The hydrothermal alteration of feldspars in acid solutions between 300° and 400°C: Econ. Geol., v. 34, pp. 578589.CrossRefGoogle Scholar
Hauser, E. A. (1955) The colloid science of important clay minerals: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council pub. 395, pp. 442472.Google Scholar
Hemwall, J. B. (1957) The role of soil clay minerals in phosphorus fixation: Soil Science, v. 83, pp. 101108.CrossRefGoogle Scholar
Hénin, S. (1956) Synthesis of clay minerals at low temperatures: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council pub. 456, pp. 5460.Google Scholar
Hillebrand, W. F., Lundell, G. E. F., Bright, H. A. and Hoffman, J. I. (1953) Applied Inorganic Analysis: John Wiley, New York, 1034 pp.Google Scholar
Hofmann, U. and Endell, J. (1939) Die Abhängegkeit des Kationaneustausches und der Quellung bei Montmorillonit von der Voreshitzung: Ver. deut. Chemiker Beihafte, 35, p. 10.Google Scholar
Hofmann, U. and Kiemen, R. (1950) Verlust der Austauschtähigkeit von Lithiumionen an Bentonit durch Erhitzung: Z. anorg. Chem., v. 262, pp. 9599.CrossRefGoogle Scholar
Johns, W. D. and Jonas, E. C. (1954) Some observations on the relation between isomorphism and properties of clays: J. Geol., v. 62, pp. 163171.CrossRefGoogle Scholar
Kerr, P. F. (1951) Alteration features at Silver Bell, Arizona: Geol. Soc. Amer. Bull., v. 63, pp. 451480.CrossRefGoogle Scholar
Kerr, P. F. (1955) Hydrothermal alteration and weathering: Geol. Soc. Amer. Special Paper 62, pp. 525544.Google Scholar
Kerr, P. F., Kulp, J. L., Patterson, C. M. and Wright, R. J. (1950) Hydrothermal alteration at Santa Rita, New Mexico: Geol. Soc. Amer. Bull., v. 61, pp. 275347.CrossRefGoogle Scholar
Krauskopf, Konrad, 1956, Dissolution and precipitation of silica at low temperatures: Soil Science, v. 10, pp. 126.Google Scholar
Latimer, W. M. (1952) The Oxidation States of the Elements and their Potentials in Aqueous Solutions: 2nd ed., Prentice-Hall, Inc., New York, 408 pp.Google Scholar
Levinson, A. A. (1955) Studies in the mica group: polymorphism among illites and hydrous micas: Amer. Min., v. 40, pp. 4149.Google Scholar
Lindgren, Waldemar, Graton, L. C. and Gordon, C. H. (1910) The ore deposits of New Mexico: U.S. Geol. Survey Prof. Paper 68, 361 pp.Google Scholar
Lovering, T. S. (1941) Origin of tungsten ores of Boulder County, Colorado: Econ. Geol., v. 36, pp. 229279.CrossRefGoogle Scholar
Lovering, T. S. (1949) Rock alteration as a guide to ore—East Tintic district, Utah: Econ. Geol. Mon. 1, 64 pp.Google Scholar
Mason, Brian (1952) Principles of geochemistry: John Wiley, New York, 276 pp.Google Scholar
McAtee, J. L. Jr. (1956) Determination of random interstratification in montmorillonite: Amer. Min., v. 41, pp. 627631.Google Scholar
McLaughlin, R. J. W. (1955) Geochemical changes due to weathering under varying climatic conditions: Geochim. Cosmochim. Acta, v. 8, pp. 109130.CrossRefGoogle Scholar
Moeller, Herald (1952) Inorganic Chemistry: John Wiley, New York, 966 pp.Google Scholar
Moore, W. J. (1950) Physical Chemistry: Prentice-Hall, Inc., New York, 592 pp.Google Scholar
Murray, H. H. and Leininger, R. K. (1956) Effect of weathering on clay minerals: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council pub. 456, pp. 340347.Google Scholar
Noddack, I. and Noddack, W. (1931) Die Geochemie des Rheniums: Z. physik. Ohmn., A, 154, p. 207.Google Scholar
Noll, W. (1934) Hydrothermal synthese des kaolins: Min. Petr. Mitt., v. 45, pp. 175190.CrossRefGoogle Scholar
Noll, W. (1936) Ueber die Bildungsbedmgungen von Kaolin, Montmorillonit, Sericit, Pyrophyllit, und Analcim: Min. petr. Mitt., v. 48, pp. 210246.CrossRefGoogle Scholar
Noll, W. (1944) New investigations in water-silicate systems: Kolloid Zeits., v. 107, pp. 181186.CrossRefGoogle Scholar
Peterson, N. P., Gilbert, C. M. and Quick, G. L. (1946) Hydrothermal alteration in the Castle Dome copper deposit: Econ. Geol., v. 41, pp. 820840.CrossRefGoogle Scholar
Rankama, Kalvero and Sahama, Th.G. (1950) Geochemistry: The University of Chicago Press, Chicago, 912 pp.Google Scholar
Ross, C. S. and Kerr, P. F. (1934) Halloysite and allophane: U.S. Geol. Survey Prof. Paper 185-G, pp. 135148.Google Scholar
Roy, Rustum (1954) The application of phase equilibrium data to certain aspects of clay mineralogy: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council pub. 327, pp. 124140.Google Scholar
Roy, Rustum and Osborn, E. F. (1954) The system Al2O3-SiO2-H2O: Amer. Min. v. 39, pp. 853885.Google Scholar
Sales, R. H. and Meyer, C. F. (1948) Wall rock alteration at Butte, Montana: A.I.M.E. Tech. Pub. 2400, pp. 935.Google Scholar
Sand, L. B. (1956) On the genesis of residual kaolins: Arner. Min., v. 41, pp. 2840.Google Scholar
Sand, L. B. and Bates, T. F. (1953) Quantitative analysis of endellite, halloysite and kaolinite by differential thermal analysis: Amer. Min., v. 38, pp. 271278.Google Scholar
Schmitt, Harrison (1950) The fumarolic-hot spring and “ epithermal “ mineral deposit environment: Colo. School of Mines Quart., v. 45, pp. 209228.Google Scholar
Schwartz, G. M. (1950) Problems in the relation of ore deposits to hydrothermal alteration: Colo. School of Mines Quart., v. 45, pp. 197208.Google Scholar
Schwartz, G. M. (1953) Geology of the San Manuel copper deposit; Arizona: U.S. Geol. Survey Prof. Paper 256, pp. 1834.Google Scholar
Schwartz, G. M. (1956) Argillic alteration and ore deposits: Econ. Geol., v. 51, p. 407.CrossRefGoogle Scholar
Shapiro, Leonard and Brannock, W. W. (1956) Rapid analysis of silicate rocks: U.S. Geol. Survey Bull. 1036—C, 56 pp.Google Scholar
Stout, P. P. (1939) Alterations in the crystal structure of the clay minerals as a result of phosphate fixation: Soil Science Soc. Amer. Proc., v. 4, pp. 177182.CrossRefGoogle Scholar
Tooker, E. W. (1956) Altered wall rocks along vein deposits in the Central City-Idaho Springs region, Colorado: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Res. Council pub. 456, pp. 348361.Google Scholar
Weaver, C. E. (1956) The distribution and identification of mixed layer clays in sedimentary rocks: Amer. Min., v. 41, pp. 202221.Google Scholar
Yoder, H. S. and Eugster, H. P. (1955) Synthetic and natural muscovites: Geochim. Cosmochim. Acta, v. 8, pp. 225280.CrossRefGoogle Scholar