Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T01:22:56.592Z Has data issue: false hasContentIssue false

Zn-rich smectite from the Silver Coin Mine, Nevada, USA

Published online by Cambridge University Press:  02 January 2018

S. Kaufhold*
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany
G. Färber
Affiliation:
Bornsche Str. 9, D-39326 Samswegen, Germany
R. Dohrmann
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany LBEG, Landesamt für Bergbau, Energie und Geologie, Stilleweg 2, D-30655 Hannover, Germany
K. Ufer
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany
G. Grathoff
Affiliation:
Ernst-Moritz-Arndt Universität Greifswald, Institute für Geographie und Geologie, Friedrich-Ludwig-Jahn-Str. 17a, D-17487 Greifswald, Germany

Abstract

More than 100 minerals have been reported from the Silver Coin Mine, Nevada USA; five new minerals have been discovered here, due to the unusual geochemical environment. The present study reports on the investigation of a greenish clayey sample from the Silver Coin Mine. After the separation of a fine fraction to enrich the clay minerals, sauconite, a rare Zn-rich smectite, was found by X-ray diffraction (XRD) and was further characterized by differential thermal analysis (DTA), infrared (IR) spectroscopy and scanning electron microscopy (SEM). The Zn-rich smectite is accompanied by illite, minor kaolinite/halloysite and traces of gibbsite (as was indicated by the IR spectroscopy). The occurrence indicates an acidic environment probably caused by oxidation of sulfides.

The determination of the structural formula, to further characterize the Zn-rich smectite, was difficult because of the multi-clay mineral assembly. However, different SEM-EDX (energy dispersive X-ray) approaches as well as transmission electron microscopy (TEM)-EDX analysis helped to characterize the smectite as Al-rich sauconite with some exchangeable K+.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, J.W. Bideaux, R.A., Bladh, K.W. & Nichols, M.C. (editors) Handbook of Mineralogy. Mineralogical Society of America, Chantilly, VA, USA. http://www.handbookofmineralogy.org/ (accessed in 2015).Google Scholar
Boni, M., Balassone, G., Arseneau, V & Schmidt, P. (2009) The nonsulfide zinc deposit at Accha (southern Peru). Geological and mineralogical characterization Economic Geology, 104, 267289.Google Scholar
Borg, G., Kärner, K., Buxton, M., Armstrong, R. & Van Der Merwe, S.W. (2003) Geology of the Skorpion supergene zinc deposit, southern Namibia. Economic Geology, 98, 749771.Google Scholar
Chukanov, N.V., Pekov, I.V, Mockel, S., Zadov, A.E. & Dubinchuk, V.T. (2006) Zinclipscombite ZnFe3+ 2-(PO4)2(OH)2 — a new mineral. Proceedings of the Russian Mineralogical Society, 135(6), 13—18.Google Scholar
Dohrmann, R., Genske, D., Karnland, O., Kaufhold, S., Kiviranta, L., Olsson, S., Plötze, M., Sandén, T., SellinP., Svensson, D. & Valter, M. (2012) Interlaboratory CEC and exchangeable cation study of bentonite buffer materials: II. Alternative methods. Clays and Clay Minerals, 60, 176185.CrossRefGoogle Scholar
Friedrich, A., Grunewald, K., Klinnert, S. & Bechmann, W. (1996) Thermogravimetric and differential thermal analytical investigations on sewage farm soils. Journal of Thermal Analysis and Calorimetry, 46, 15891597.Google Scholar
Genth, F.A. (1875) Preliminary Report on the Mineralogy of Pennsylvania. Pennsylvania Geological Survey, 2ndreport, p. 120.Google Scholar
Grim, R.E. & Güven, N. (1978) Bentonites - Geology, Mineralogy and Uses. Developments inSedimentology, 24. Elsevier, Amsterdam.Google Scholar
Higashi, S., Miki, K. & Komarneni, S. (2002) Hydrothermal synthesis of Zn-rich smectites. Clays and Clay Minerals, 50, 299305.Google Scholar
Hitzman, M.W., Reynolds, N.A., Sangster, D.F., Allen, C.R. & Carman, C.E. (2003) Classification, genesis, and exploration guides for nonsulfide zinc deposits. Economic Geology, 98, 685714.CrossRefGoogle Scholar
Jasmund, K. & Lagaly, G. (1993) Tonminerale und Tone. Steinkopf Verlag, Darmstadt, Germany, 490 pp.Google Scholar
Kampf, A.R., Adams, P.M., Kolitsch, U. & Steele, I.M. (2009) Meurigite-Na, a new species, and the relation¬ship between phosphofibrite and meurigite. American Mineralogist, 94, 720727.CrossRefGoogle Scholar
Kampf, A.R., Adams, P.M. & Housley, R.M. (2012) Fluorowardite, IMA 2012-016. CNMNC Newsletter No. 13, June 2012, page 816; Mineralogical Magazine, 76, 807817.Google Scholar
Kärner, K. (2006) The Metallogenesis of the Skorpion Non-Sulphide Zinc Deposit, Namibia. Dissertation, Martin-Luther-Universität Halle-Wittenberg, 252 pp.Google Scholar
Kaufhold, S. & Dohrmann, R. (2003) Beyond the methylene blue method: determination of the smectite content using the Cu-trien method. Zeitschrift für Angewandte Geologie, 2, 1318.Google Scholar
Kaufhold, S., Dohrmann, R., Ufer, K & Meyer, F.M. (2002) Comparison of methods for the quantification of montmorillonite in bentonites. Applied Clay Science, 22, 145151.CrossRefGoogle Scholar
Kaufhold, S., Dohrmann, R. & Stucki, J. (2011a) Layer charge density of montmorillonite — closing the gap between structural formula method and alkyl ammonium method. Clays and Clay Minerals, 59, 200211.CrossRefGoogle Scholar
Kaufhold, S., Dohrmann, R., Ufer, K., Kleeberg, R. & Stanjek, H. (2011b) Cu trien exchange to improve the analytical understanding of smectites. Clay Minerals, 46,411420.Google Scholar
Kaufhold, S., Dill, H.G. & Dohrmann, R. (2012a) Clay mineralogy and rock strength of a mid-German diabase — implications for improved quality control. Clay Minerals, 47, 419-428.Google Scholar
Kaufhold, S., Hein, M., Dohrmann, R. & Ufer K (2012b) Quantification of the mineralogical composition of clays using F.I. spectroscopy. Journal ofVibrational Spectroscopy, 59, 2939.CrossRefGoogle Scholar
Köster, H.M. (1982) The crystal structure of 2:1 layer silicates. pp. 41-71 in: Proceedings of the International Clay Conference, Bologna, Pavia, 1981 (H. Van Olphen andF. Veniale, editors). Elsevier, Amsterdam.Google Scholar
Madejova, I, Komadel, P. & Číčel, B. (1994) Infrared study of octahedral site populations in smectites. Clay Minerals, 29, 319326.CrossRefGoogle Scholar
Madejova, I, Keckes, J., Pálková H. & Komadel, P. (2002) Identification of components in smectite/kaolinite mixtures. Clay Minerals, 37, 377388.CrossRefGoogle Scholar
Meier, L.P. & Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals, 47, 386388.Google Scholar
Miller, B.L., Fraser, D.M., Miller, R.L. et al. (1941) Lehigh County Pennsylvania. Pennsylvania Geological Survey, 4th series. County Report 39, p. 340.Google Scholar
Mills, S.J., Kampf, A.R., Sejkora, J., Adams, P.M., Birch, W. D. & Plášil, J. (2011) Iangreyite: a new secondary phosphate mineral closely related to perhamite. Mineralogical Magazine, 75, 327—336.CrossRefGoogle Scholar
Mills, S.J., Sejkora, J., Kampf, A.R., Grey, I.E., Bastow, T.J., Ball, N.A., Adams, P.M., Raudsepp, M. & Cooper, M.A. (2012) Krásnoite, the fluorophosphate analogue of perhamite, from the Huber open pit, Czech Republic and the Silver Coin mine, Nevada, USA. Mineralogical Magazine, 76, 625—634.CrossRefGoogle Scholar
Mitra, R.P. & Sindhu, P.S. (1971) Acid character of sauconite: increase in cation exchange capacity on aging in water and the role of Z. + and A. + ions. Clays and CIay Minerals, 19, 391397.Google Scholar
Mondillo, N., Boni, M., Balassone, G. & Villa, I.M. (2014) The Yanque Prospect (Peru): from polymetallic Zn-Pb mineralization to a nonsulphide deposit. Economic Geology, 109, 17351762.Google Scholar
Petit, S., Righi, D. & Decarreau, A. (2008) Transformation of synthetic Zn-stevensite to Zn-talc induced by the Hofmann-Klemen effect. Clays and Clay Minerals, 56, 645654.Google Scholar
Rollinson, G.K., Andersen, J.C., Stickland, R.J., Boni, M. & Fairhurst, R. (2011) Characterisation of supergene non-sulphide zinc deposits using QEMSCAN®. Minerals Engineering, 24, 778—787.Google Scholar
Ross, C.S. (1946) Sauconite — A clay mineral of the montmorillonite group. American Mineralogist, 31, 411-424.Google Scholar
Tiller, K.G. & Pickering, J.G. (1974) The synthesis of zinc silicates at 20°C and atmospheric pressure. Clays and Clay Minerals, 22, 409416.Google Scholar
Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R. & Kaufhold, S. (2008) Quantitative phase analysis of bentonites by the Rietveld method. Clays and Clay Minerals, 56, 272282.CrossRefGoogle Scholar
Vanderburg, W.O. (1988) Mines of Humboldt and Pershing Counties. Nevada Publications, Las Vegas (reissue of U.S. Bureau of Mines Information Circular 6995, Reconnaissance of mining districts in Humboldt County, Nevada, 1938).Google Scholar
van der Marel, H.W. & Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures. Elsevier Scientific Publ. Co., Amsterdam, 396 pp.Google Scholar
Vogels, R.J.M.J., Kloprogge, J.T. & Geus, J.W. (2005a) Synthesis and characterization of saponite clays. American Mineralogist, 90, 931944.Google Scholar
Vogels, R.J.M.J., Kloprogge, I., Geus, J.W. & Beers, A.W.F.(2005b) Synthesis and characterization of saponite clays: Part 2. Thermal stability. American Mineralogist 90, 945953.Google Scholar
Wilkins, R.W.T. & Ito I (1967) Infrared spectra of some synthetic talcs. American Mineralogist, 52, 16491661.Google Scholar
Yokoyama, S., Tamura, K., Hatta, T., Nemoto, S., Watanabe, Y & Yamada, H. (2006) Synthesis and characterization of Zn-substituted saponite (sauconite). Clay Science, 13, 7580.Google Scholar