Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T18:49:03.379Z Has data issue: false hasContentIssue false

X-ray diffraction Warren–Averbach mullite analysis in whiteware porcelains: influence of kaolin raw material

Published online by Cambridge University Press:  04 September 2018

Angel Sanz
Affiliation:
Unidad Departamental de Geología, Universidad de Valencia, Campus de Burjassot, 46100 Burjassot, Valencia, Spain
Joaquín Bastida*
Affiliation:
Unidad Departamental de Geología, Universidad de Valencia, Campus de Burjassot, 46100 Burjassot, Valencia, Spain
Angel Caballero
Affiliation:
Instituto de Cerámica y Vidrio (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
Marek Kojdecki
Affiliation:
Instytut Matematyki i Kryptologii, Wojskowa Akademia Techniczna, 00-908 Warszawa 49, Poland
*

Abstract

Compositional and microstructural analysis of mullites in porcelain whitewares obtained by the firing of two blends of identical triaxial composition using a kaolin B consisting of ‘higher-crystallinity’ kaolinite or a finer halloysitic kaolin M of lower crystal order was performed. No significant changes in the average Al2O3 contents (near the stoichiometric composition 3:2) of the mullites were observed. Fast and slow firing at the same temperature using B or M kaolin yielded different mullite contents. The Warren–Averbach method showed increase of the D110 mullite crystallite size and crystallite size distributions with small shifts to greater values with increasing firing temperature for the same type of firing (slow or fast) using the same kaolin, as well as significant differences between fast and slow firing of the same blend at different temperatures for each kaolin. The higher maximum frequency distribution of crystallite size observed at the same firing temperature using blends with M kaolin suggests a clearer crystallite growth of mullite in this blend. The agreement between thickening perpendicular to prism faces and mean crystallite sizes <D110> of mullite were not always observed because the direction perpendicular to 110 planes is not preferred for growth.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Guest Associate Editor: N. Fagel

This paper was originally presented during the session: ‘CZ-01 – Clays for ceramics’ of the International Clay Conference 2017.

References

REFERENCES

Amigó, J.M., Bastida, J., Sanz, A., Signes, M. & Serrano, F.J. (1994) Crystallinity of lower Cretaceous kaolinites of Teruel (Spain). Applied Clay Science, 9, 5169.Google Scholar
Aparicio, P. & Galán, E. (1999) Mineralogical interference on kaolinite ‘crystallinity’ index measurements. Clays and Clay Minerals, 47, 1227.Google Scholar
Ban, T. & Okada, K.J. (1992) Structure refinement of mullite by the Rietveld method and a new method for estimation of chemical composition. Journal of the American Ceramic Society, 75. 227311.Google Scholar
Bernasconi, A., Marinoni, N., Pavese, A., Francescone, F. & Young, K. (2014) Feldspar and firing cycle effects on the evolution of sanitary-ware vitreous body. Ceramics International, 40, 63896398.Google Scholar
Brindley, G.W. (1961) Kaolin, serpentine and kindred minerals. Pp. 51131 in: The X-Ray Identification and Crystal Structures of Clay Minerals (Brown, G., editor). Mineralogical Society, London, UK.Google Scholar
Carty, W.M. & Senapati, U. (1998) Porcelain – raw materials, processing, phase evolution and mechanical behaviour. Journal of the American Ceramic Society, 81, 320.Google Scholar
Chakraborty, A.K. (2014) Phase Transformation of Kaolinite Clay. Springer, Heidelberg, Germany.Google Scholar
Chen, Y.F., Wang, M.C. & Hon, M.H. (2004) Phase transformation and growth of mullite in kaolin ceramics. Journal of the American Ceramic Society, 24, 23892397.Google Scholar
Clarke, G. (2008) Tubular clays. Industrial Minerals, 486(Clays Supplement), 5859.Google Scholar
Clausell, J.V., Bastida, J., Serrano, F.J., Pardo, P. & Huertas, F.J. (2007) A new FESEM procedure for assessment of XRD microstructural data of kaolinites. Applied Clay Science, 37, 127132.Google Scholar
Davis, B.L. & Smith, D.K. (1989) Table of experimental reference intensity ratios. Powder Diffraction, 3, 201206.Google Scholar
Eberl, D.D., Środoń, J., Lee, M., Nadeau, P.H. & Northrup, H.R. (1987) Sericite from the Silverton caldera, Colorado: correlation among structure, composition, origin and particle thickness. American Mineralogist, 72, 914934.Google Scholar
Eberl, D.D., Drits, V.A., Środoń, J. & Nüesch, R. (1996) MudMaster: A Program for Calculating Crystalline Size Distributions and Strain from the Shapes of X-Ray Diffraction Peaks. US Geological Survey, Reston, VA, USA.Google Scholar
Eberl, D.D., Drits, V.A. & Środoń, J. (1998) Deducing crystal growth mechanisms for minerals from the shapes of crystal size distributions. American Journal of Science, 298, 499533.Google Scholar
Iqbal, Y. & Lee, W.E. (1999) Fired porcelain microstructure revisited. Journal of the American Ceramic Society, 82, 35843590.Google Scholar
Iqbal, Y. & Lee, W.E. (2000) Microstructural evolution in triaxial porcelain. Journal of the American Ceramic Society, 83, 31213127.Google Scholar
Kojdecki, M.A. (2004) Approximate estimations of contributions to pure X-ray diffraction line profiles from crystallite sizes, shapes and strains by analysing peaks widths. Materials Science Forum, 443–444, 107110.Google Scholar
Kojdecki, M.A., Serrano, F.J., Clausell, J.V. & Bastida, J. (2001) Sizes and shapes of crystallites in mullites produced by thermal treatment of kaolin-alumina mixture. Parts 1&2. Materials Science Forum, 378–373, 747752.Google Scholar
Langford, J.I. (1978) A rapid method for analysing breadths of diffraction and spectral lines using the Voigt function. Journal of Applied Crystallography, 11, 1014.Google Scholar
Lanson, B. & Kübler, B. (1994) Experimental determination of coherent scattering domain size distribution of natural mica-like phases with the Warren–Averbach technique. Clays and Clay Minerals, 42, 489494.Google Scholar
Lee, W.E. & Iqbal, Y. (2001) Influence of mixing on mullite formation in porcelain. Journal of the European Ceramic Society, 21, 25832586.Google Scholar
Lee, W.E., Souza, G.P., McConville, C.J., Tarvornpanich, T. & Iqbal, Y. (2008) Mullite formation in clays and clay-derived vitreous ceramics. Journal of the American Ceramic Society, 60, 465471.Google Scholar
Martín-Márquez, J., Rincón, J.M. & Romero, M. (2010) Mullite development on firing in porcelain stoneware bodies. Journal of the European Ceramic Society, 30, 15991607.Google Scholar
Mittemeijer, E.J. & Scardi, P., editors (2013) Diffraction Analysis of the Microstructure of Materials. Springer, Heidelberg, Germany.Google Scholar
Niskanen, E. (1964) Reduction of oriented effects in the quantitative X-ray diffraction analysis of kaolin minerals. American Mineralogist, 49, 705714.Google Scholar
Pardo, P., Bastida, J., Serrano, F.J., Ibañez, R. & Kojdecki, M.A. (2009) X-ray diffraction line-broadening study on two vibrating. dry-milling procedures in kaolinites. Clays and Clay Minerals, 57, 2534.Google Scholar
Pielaszek, R., Łojkowski, W., Gierlotka, S. & Doyle, S. (2006) Error estimation in XRD crystallite size measurements. Solid State Phenomena, 114, 313320.Google Scholar
Romero, M. & Perez, J.M. (2015) Relation between the microstructure and technological properties of porcelain stoneware: a review. Materiales de Construcción, 65, e065.Google Scholar
Sainz, M.A., Serrano, F.J., Bastida, J. & Caballero, A. (1997) Microstructural evolution and growth of crystallite size of mullite during thermal transformation of kyanite. Journal of the European Ceramic Society, 17, 12771284.Google Scholar
Sainz, M.A., Serrano, F.J., Amigó, J.M., Bastida, J. & Caballero, A. (2000) XRD microstructural analysis of mullites obtained from kaolinite-alumina mixtures. Journal of the European Ceramic Society, 20, 403412.Google Scholar
Sanz, A., Bastida, J., Kojdecki, M.A., Caballero, A. & Serrano, F.J. (2009) Evolution of size and shape of mullite crystallites in triaxial porcelains. Zeitschrift für Kristallographie Supplements, 30, 435440.Google Scholar
Sanz, A., Bastida, J., Kojdecki, M.A., Caballero, A. & Serrano, F.J. (2011) Influence of quartz particle size of triaxial compositions on mullite formation in the obtained porcelains. Zeitschrift für Kristallographie Proceedings, 1, 425430.Google Scholar
Sanz, A. (2015) Estudio del Tamaño de Cristalito en Porcelanas Industriales. Doctoral thesis. Progr. 635–320 C. Química Inorgánica. Universidad de Valencia. Burjassot (Valencia, Spain). URL http://roderic.uv.es/handle/10550/50078Google Scholar
Schneider, H., Schreuer, J. & Hildmann, B. (2008) Structure and properties of mullite – a review. Journal of the American Ceramic Society, 28, 329344.Google Scholar
Serrano, F.J., Bastida, J., Amigó, J.M., Sanz, A. (1996) XRD line broadening studies on mullite. Crystal Research and Technology, 31, 10851093.Google Scholar
Singer, F. & Singer, S.S. (1963) Industrial Ceramics. Cambridge University Press, Cambridge, UK.Google Scholar
Warren, B.E. & Averbach, B.L. (1950) The effect of cold work distortion on X-ray patterns. Journal of Applied Physics, 21, 595599.Google Scholar
Wilson, I. & Keeling, J. (2016) Global occurrence, geology and characteristics of tubular halloysite deposits. Clay Minerals, 51, 309324.Google Scholar
Yoon, W., Sarin, P. & Kriven, W.M. (2008) Growth of textured mullite fibbers using a quadrupole lamp furnace. Journal of the European Ceramic Society, 28, 445463.Google Scholar