Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T20:16:23.586Z Has data issue: false hasContentIssue false

Use of flocculated fraction of calcareous soil suspensions after ultrasonic treatment for mineralogical study

Published online by Cambridge University Press:  09 July 2018

M. S. Heakal
Affiliation:
Groupe de Physìco-chimie Minerale et de Catalyse, Université Catholique de Louvain, Place de Croix du Sud 1, 5-1348 Louvain-la-Neuve, Belgium and Section de Physico-chimie Minerale du Musée Royal de l'Afrique Centrale, Università Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
A. J. Herbillon
Affiliation:
Groupe de Physìco-chimie Minerale et de Catalyse, Université Catholique de Louvain, Place de Croix du Sud 1, 5-1348 Louvain-la-Neuve, Belgium and Section de Physico-chimie Minerale du Musée Royal de l'Afrique Centrale, Università Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium

Abstract

Separation of the clay fraction from a calcareous soil usually involves chemical pretreatments which could affect the separated clays. A technique based on separating the flocculated particles (flocs) of a sonified soil-water suspension was used on highly calcareous samples and a highly gypseous one collected from a limestone ridge in Egypt. The relative abundance of the clay minerals in flocs (identified by XRD and electron microscopy) was found to be identical to that of < 1 μm clay separated by sedimentation. The suspensions were prepared by washing the soils repeatedly with distilled water (about 2 1/g) until spontaneous peptization.

Washing removed both 'amorphous' silica and alumina as detected in the flocs. The composition of poorly-ordered aluminosilicates (SiO2/Al2O3) of the 1μm clays was heterogeneous whereas in the flocs it was homogeneous.

Fluoride reactivity of both clay separates and prepared mixtures of CaCO3 with palygorskite (the dominant clay mineral present) was also studied.

Sommaire

Sommaire

La séparation d'une fraction d'argile d'un sol calcaire comprend généralement des prétraitements chimiques qui peuvent affecter les argiles individuellement. Une technique fondée sur la separation des particules floconneuses d'une suspension d'eau dans un sol “soniᏲé” était utilisée sur un échantillon à teneur en calcaire et gypse élevée et prélevé sur une chaìne de calcaire égyptienne. L'abondance relative des minéraux dans les flocons (identifies par la microscopie XRD et électronique) a t'ti trouvée identique à celle de l'argile séparée (< 1 μm) obtenu par sédimentation. Les suspensions ont été préparées en lavant les sols plusieurs fois avec de l'eau distillée (environ 2 1/g) jusqu'à peptisation spontanee. Le lavage a retire à la fois la silice “amorphe” et l'alumine détectées dans les flocons. La composition des aluminosilicates (SiO2/Al2O3) pauvrement classes des argiles de létait hétérogène à chaque fois que la composition des flocons était homogène. On a également étudié la réactivité des fluorures à la fois des argiles individuelles et des mélanges de CaCO3 préparés avec de la palygorskite (le mineral argileux dominant en présence).

Kurzreferat

Kurzreferat

Die Abscheidung der Tonfraktion aus einem Kalkboden bedingt in der Regel chemische Vorbehandlungen, die auf die abgeschiedenen Tontypen einen Einfluss ausüben könnten. Im Zusammenhang mit einer im hohen Masse kalkhaltigen Probe und einer in hohem Masse gipshaltigen Probe, die von einem Kalksteinrucken in Àgypten stammten, wurde ein Verfahren angewandt, bei dem die ausgeflockten Teilchen einer mit Schallwellen behandelten Erd-Wassersuspension getrennt wurden. Der relativ hohe Anteil der Tonmineralien in den ausgeflockten Teilchen (festgestellt durch Rontgendiffraktion und Elektronenmikroskopie) erwies sich als identisch mit dem von < 1 μm Ton, der durch Sedimentation abgeschieden wurde. Die Suspensionen wurden durch wiederholtes Waschen der Erden mit destilliertem Wasser (rund 2 1/g) angefertigt, bis spontane Peptisation eintrat.

Durch das Waschen wurden die “amorphen” Kieselerde- und Tonerdebestandteile, die man in den ausgeflockten Teilchen festgestellt hatte, entfernt. Die Zusammensetzung der unregelmàssigen Aluminiumsilikate (Si02/Al203) der 1/μm Tonteilchen war heterogen, wàhrend sie in den ausgeflockten Teilchen homogen waren.

Die Fluoridreaktivitàt der abgeschiedenen Tonteilchen und der angefertigten Gemische von CaC03 mit Palygorskit (dem vorherrschenden Tonmineral in den Proben) wurde ebenfalls untersucht.

Referata

Referata

La separación de la fracción arcillosa de un terreno calcàreo implica usualmente pretratamientos quimicos que pudieran afectar las arcillas separadas. Se empieo una tècnica basada en la separación de las particulas floculadas (flocs) de una suspension de suelo-agua sonifìcada, con una muestra altamente calcàrea y una altamente yesosa, recolectadas en una cordillera de piedra caliza en Egipto. La abundancia relativa de los minerales arcillosos en flocs (identificados mediante determinación roentgenográfica y microscopia electrónica) se halló que era igual a la de < 1 μm de ardila separada por sedimentación. Se prepararon las suspensiones lavando repetidamente las tierras con agua destilada (approximadamente 2 1/g) hasta producirse peptización espontànea.

El lavado eliminò silice y alumina ‘amorfos’ que se habían detectado en los flocs. La composición de los-aluminosilicatos escasamente ordenados (SiO2/Al2O3) de las arcillas 1 μm fue heterogénea, mientras que en los flocs era homogénea.

También se estudió la reactividad de fluoruro de ambos separados arcillosos y mezclas preparadas de CaCO2 con paligorskita (el mineral arcilloso dominante presente).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beutelspacher, H. & Fiedler, E. (1964) Transactions of the Eighth International Congress on Soil Science, Bucharest, Vol. 3, 1143.Google Scholar
Bracewell, J.M., Campbell, A.D. & Mitchell, B.D. (1970) Clay Miner. 8, 325.CrossRefGoogle Scholar
Caillere, S. & Hénin, S. (1961) The X-ray Identification and Crystal Structures of Clay Minerals (Ed. by G. Brown, Chap. IX, p. 343. Mineralogical Society, London.Google Scholar
Dudas, M.J. & Harward, M.E. (1971) Proc. Soil Sci. Soc. Am. 35, 134.CrossRefGoogle Scholar
Edwards, A.P. & Bremner, J.M. (1964) Can. J. Soil Sci. 44, 366.CrossRefGoogle Scholar
Edwards, A.P. & Bremner, J.M. (1967) J. Soil Sci. 18, 47.CrossRefGoogle Scholar
Eloabaly, M.M., Gewaifel, I.M. & Hassan, M.N. (1969) Res. Bull. 21, Institute Land Reclamation, University of Alexandria, Egypt.Google Scholar
Emerson, W.W. (1971) J. Soil Sci. 33, 50.CrossRefGoogle Scholar
Garrels, R.M. & Christ, C.L. (1965) Solutions, Minerals, and Equilibria, p. 76. Harper & Row, New York.Google Scholar
Genrich, D.A. & Bremner, J.M. (1972) Proc. Soil Sci. Soc. Am. 36, 944.CrossRefGoogle Scholar
Genrich, D.A. & Bremner, J.M. (1974) Proc. Soil Sci. Soc. Am. 38, 222.CrossRefGoogle Scholar
Hashimoto, I. & Jackson, M.L. (1960) Clays Clay Miner. 7, 102.CrossRefGoogle Scholar
Jackson, M.L. (1962) Soil Chemical Analysis. Constable & Company, England.Google Scholar
Kanno, I. & Arimura, S. (1967) Soil Sci. Plant Nutr. 13, 165.CrossRefGoogle Scholar
Lavkulich, L.M. & Wiens, J.H. (1970) Proc. Soil Sci. Am. 34, 755.CrossRefGoogle Scholar
Lawrie, D.C. (1961) Soil Sci. 92, 188.CrossRefGoogle Scholar
Olmstead, L.B. (1931) J. Agric. Res. 42, 441.Google Scholar
Perez-Rodriguez, J.L. & Wilson, M.J. (1969) Clay Miner. 8, 39.CrossRefGoogle Scholar
Reiniger, P., Lahav, N. & Bolt, G.H. (1964) Transactions of the Eighth International Congress on Soil Science, Bucharest, 479.Google Scholar
Robertson, G. (1950) J. Sci. Fid. Agric. 1, 59.CrossRefGoogle Scholar
Saly, R. (1967) Soviet Soil Sci. 11, 1547.Google Scholar
Shaw, H.F. (1972) Clay Miner. 9, 349.CrossRefGoogle Scholar
Van Olphen, H. (1963) Clay Colloid Chemistry, p. 96. John Wiley, New York.Google Scholar
Vogel, A.I. (1961) Quantitative Inorganic Analysis, p. 584. Longman, London.Google Scholar
Vladimirov, V.E. (1968) Soviet Soil Sci. 5, 654.Google Scholar
Voinovitch, L.A., Debras-Guendon, J. & Louvrier, J. (1962) Vanalyse des Silicates, p. 467. Hermann, Paris.Google Scholar
Wada, K. & Greenland, D.J. (1970) Clay Miner. 8, 241.CrossRefGoogle Scholar