Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T20:41:55.687Z Has data issue: false hasContentIssue false

The use of clay minerals and microfossils in palaeoenvironmental reconstructions: The Holocene littoral strand of Las Nuevas (Doñana National Park) SW Spain

Published online by Cambridge University Press:  09 July 2018

M. I. Carretero*
Affiliation:
Departamento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, Apdo. 553, Seville
F. Ruiz
Affiliation:
Departamento Geodinámica y Paleontología, Universidad de Huelva, 21819-Palos de la Frontera, HuelvaSpain
A. Rodríguez-Ramírez
Affiliation:
Departamento Geodinámica y Paleontología, Universidad de Huelva, 21819-Palos de la Frontera, HuelvaSpain
L. Cáceres
Affiliation:
Departamento Geodinámica y Paleontología, Universidad de Huelva, 21819-Palos de la Frontera, HuelvaSpain
J. Rodríguez Vidal
Affiliation:
Departamento Geodinámica y Paleontología, Universidad de Huelva, 21819-Palos de la Frontera, HuelvaSpain
M. L. González Regalado
Affiliation:
Departamento Geodinámica y Paleontología, Universidad de Huelva, 21819-Palos de la Frontera, HuelvaSpain
*

Abstract

Three steps have been established during the Holocene formation of the bar-built estuary of Las Nuevas (Doñana National Park, Spain), on the basis of the clay mineralogy variations and the palaeontological record. The first step is characterized by the presence of ostracodes and homogeneous quantities of clay minerals (17–20% illite, 25–29% smectites), values of smectite (0.64–0.70) and illite (0.60–0.70) crystallinity indexes, and the ratio of AlVI/(FeVI + MgVI) in illite (0.46–0.47). This zone is interpreted as a very shallow lagoon with euryhaline conditions. The presence of roots, the progressive disappearance of foraminifers and an increase in the smectite content (up to 35%) define the second step. A salt-marsh environment with low-energy hydrodynamic conditions is deduced for this zone. The third step is characterized by an increase in illite content (up to 35%), and a decrease of the smectite content (up to 21%). The smectite crystallinity index decreased to 0.38, whereas the illite ratio AlVI/(FeVI + MgVI) decreased to 0.36. In this zone, the ostracode assemblage contains numerous juvenile stages of coastal species coinciding with lumachelle accumulations of the estuarine bivalves, abundant foraminifers and the presence of charophytes. This zone represents a strong marine input, probably caused by storms.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anadón, P., De Deckker, P. & Juliá, R. (1986) The Pleistocene lake deposits of the NE Baza Basin (Spain): salinity variations and ostracode succession. Hydrobiologia, 143, 199208.CrossRefGoogle Scholar
Barahona, E. (1974) Arcillas de ladrillería de la provincia de Granada: evaluación de algunos ensayos de materias primas. PhD thesis, Granada University, Spain, 398 pp.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803832.Google Scholar
Callen, R.A. (1984) Clays of the palygorskite-sepiolite group: depositional environment, age and distribution. Pp. 137 in: Palygorskite-Sepiolite Ocurrence, Genesis and Uses. (A. Singer & E. Galán, editors). Elsevier, Amsterdam.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer Verlag, Berlin, 623 pp.Google Scholar
Deconinck, J.F. & Chamley, H. (1995) Diversity of smectite origins in late Cretaceous sediments: example of chalks from northern France. Clay Minerals, 30, 365379.Google Scholar
Delgado, H. , Rocha, F. & Gomes, C. (1992) Considerations on the evolution of the ‘Ria de Aveiro’ logoon during the last 500 years based on clay mineralogy. Mineralogica et Petrographica Acta, XXXV-A, 105110.Google Scholar
Esquevin, J. (1969) Influence de la composition chimique des illites sur leur cristallinité. Bulletin de Centre Recherche Pau (SNPA), 3, 147154.Google Scholar
Galán, E. (1986) Las arcillas como indicadores paleoambientales. Boletín de la Sociedad Española de Mineralogía, 9, 1122.Google Scholar
González-Regalado, M.L., Ruiz, F. & Borrego, J. (1996) Evolución de la distribución de los foraminíferos bentónicos en un medio contaminado: el estuario del río Odiel (Huelva, SO España). Revista Española de Paleontologia, 11, 110.Google Scholar
Gutierrez Mas, J.M., López Galindo, A. & López Aguayo, F. (1997) Clay minerals in recent sediments of the continental shelf and the Bay of Cádiz (SW Spain). Clay Minerals, 32, 507515.Google Scholar
Jones, G.A. (1984) Advective transport of clay minerals in the region of the Rio Grande Rise. Marine Geology, 58, 187212.Google Scholar
Keller, W.D. (1970) Environmental aspects of clay minerals. Journal of Sedimentary Petrology, 40, 788813.Google Scholar
Kisch, H.J. (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and inter laboratory samples. Journal of Metamorphic Geology, 9, 665670.Google Scholar
Klingebiel, A. & Latouche, C. (1962) Etude crystallographique des illites dans les series Eocenes du Bordelais. Comptes Rendus de l’Académie des Sciences Paris, 255, 142144.Google Scholar
Kübler, B. (1968) Evaluation quantitative du metamorphisme para la cristallinité de l’illite. Bulletin de Centre Recherche Pau-SNPA. 2, 385397.Google Scholar
Kuzvart, M. & Konta, J. (1968) Kaolin and lateritic weathering crust in Europe. Acta Universitatis Carolinae Geologia, 1–2, 119.Google Scholar
Lario, J. (1996) U´ ltimo y presente interglacial en el área de conexión atlántico-mediterráneo (sur de España). Variaciones del nivel del mar, paleoclima y paleoambientes. PhD thesis, Univ. Complutense, Madrid, Spain.Google Scholar
López Aguayo, F. & González López, J.M. (1992) The Almazan Basin: model of chemical and mineralogical evolution (factorial analysis). Mineralogica et Petrographica Acta, XXXV A, 99104.Google Scholar
López Aguayo, F. & González López, J.M. (1995) Fibrous clays in the Almazan Basin (Iberian Range, Spain): genetic pattern in a calcareous lacust rine enviro nment. Clay Mineral s, 30, 395406.Google Scholar
López Galindo, A., Rodero, J. & Maldonado, A. (1999) Surface facies and sediment dispersal patterns: southeastern Gulf of Cádiz, Spanish continental margin. Marine Geology, 155, 8398.CrossRefGoogle Scholar
Marocco, R., Melis, R., Montenegro, M.E., Pugliese, N., Vio, E. & Lenardon, G. (1996) Holocene evolution of the Caorle barrier-lagoon (northern Adriatic Sea, Italy). Rivista Italiana Paleontologica e Stratigrafia, 102, 385396.Google Scholar
Mayayo, M.J., Bauluz, B. & González López, J.M. (2000) Variations in the chemistry of smectites from the Calatayud Basin (NE Spain). Clay Minerals, 35, 365374.CrossRefGoogle Scholar
Montenegro, M.E. & Pugliese, N. (1996) Autoecological remarks on the ostracode distribution in the Marano and Grado Lagoons (Northern Adriatic Sea, Italy). Pp. 123132 in. Autoecology of Selected Fossil Organisms: Achievements and Problems (Cherchia, A., editor). Bul lettino dell a Societ áPaleont ológica Ital iana, Special Volume 3, Modena, Italy.Google Scholar
Ortega Huertas, M., Palomo, I., Moresi, M. & Oddone, M. (1991) A mineralogical and geochemical approach to establishing a sedimentary model in a passive continental margin (Subbetic zone, Betic Cordilleras, SE Spain. Clay Minerals, 26, 389407.Google Scholar
Pletsch, T., Daoudi, L., Chamley, H., Deconinck, J.F. & Charroud, M. (1996) Palaeogeographic controls on palygorskite occurrence in Mid-Cretaceous sediments of Morocco and Adjacent basins. Clay Minerals, 31, 403416.Google Scholar
Rodríguez Ramírez, A. (1996) Geomorfología continental y submarina del Golfo de Cádiz (Guadiana- Guadalquivir), durante el Cuaternario reciente. PhD thesis, Univ. Huelva, Spain.Google Scholar
Rodríguez-Ramírez, A., Rodríguez Vidal, J., Cáceres, L., Clemente, L., Belluomini, G., Manfra, L., Improta, S. & de Andres, J.R. (1996) Recent coastal evolution of the Doñana National Park (S. Spain). Quaternary Science Reviews, 15, 803809.Google Scholar
Rotschy, F., Vergnaud-Grazzini, C., Bellaiche, G. & Chamley, H. (1972) Etude paleoclimatologique d’une carotte prélevée sur un dôme de la plaine abyssale ligure (‘structur e Alinat’). Palaeogeog raphy, Climatology, Ecology, 11, 125145.Google Scholar
Ruiz, F., González-Regalado, M.L., Borrego, J. & Morales, J.A. (1997a) The response of ostracode assemblages to recent pollution and sedimentary processes in the Huelva Estuary, SW Spain. The Science of the Total Environment, 207, 91103.Google Scholar
Ruiz, F., González-Regalado, M.L. & Muñoz, J.M. (1997b) Multivariate analysis applied to total and living fauna: seasonal ecology of recent benthic Ostracoda off the North Cádiz Gulf coast (southwestern Spain). Marine Micropalaeontology, 31, 183203.CrossRefGoogle Scholar
Ruiz, F., Gonzá lez-Regalado, M.L., Baceta, J.I., Menegazzo-Vitturi, L., Pistolato, M., Rampazzo, G. & Molinaroli, E. (2000) Los ostrácodos actuales de la Laguna de Venecia (NE de Italia). Geobios, 33, 4, 447454.Google Scholar
Sancetta, C., Heusser, L., Labeyrie, L., Naidu, A.S. & Robinson, S.W. (1985) Wisconsin-Holocene paleoenvironment of the Bering Sea: evidence from diatoms, pollen, oxygen isotopes and clay minerals. Marine Geology, 62, 5568.Google Scholar
Schulz, L.G. (1964) Quantitative interpretation of mineral composition from X-ray and chemical data for the Pierre Shale. United States Geological Survey, Professional Paper, 391C.Google Scholar
Shaghude, Y.W. & Wannas, K.O. (2000) Mineralogical and biogenic composition of the Zanzibar Channel sediments, Tanzania. Estuarine Coastal Shelf Science, 51, 477489.Google Scholar
Singer, A. (1984) The paleoclimatic interpretation of clay minerals in sediments. A review. Earth-Science Reviews, 21, 251293.Google Scholar
Tank, R.W. (1963) Clay mineralogy of some lower tertiary (Palogene ) sediments from Denmark. Danmarks Geologiske Undersøgelse, 4, 45 pp.Google Scholar
Tomadin, L. & Varani, L. (1992) Source and composition of alluvial muds in the central Po river course. Mineralogica et Petrographica Acta, XXXV-A, 5565.Google Scholar
Tomadin, L. & Varani, L. (1998) Provenance and downstream mineralogical evolution of the muds transported by the Po River (Northern Italy). Mineralogica et Petrographica Acta, XLI, 205224.Google Scholar
Vanderaveroet, P., Averbuch, O., Deconick, J.F. & Chamley, H. (1999) A record of glacial/interglacial alternations in Pleistocene sediments off New Jersey expressed by clay mineral, grain size and magnetic susceptibility data. Marine Geology, 159, 7992.Google Scholar
Vanderaveroet, P., Bout-Roumazeilles, V., Fagel, N., Chamley, H. & Deconinck, J.F. (2000) Significance of random illite- vermiculi te mixed layers in Pleistocene sediments of the northwestern Atlantic Ocean. Clay Minerals, 35, 679691.Google Scholar
Zazo, C., Goy, J.L., Somoza, L., Dabrio, C.J., Belluomini, G., Improta, S., Lario, J., Bardaji, T. & Silva, P.G. (1994) Holocene sequence of sea-level fluctuations in relation to climatic trends in the Atlantic- Mediterranean linkage coast. Journal of Coastal Research, 10, 933945.Google Scholar