Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T20:26:42.064Z Has data issue: false hasContentIssue false

Two examples of quantitative analysis by simulated X-ray powder diffraction patterns

Published online by Cambridge University Press:  09 July 2018

C. E. Corbato
Affiliation:
Department of Geology & Mineralogy, The Ohio State University, Columbus, Ohio 43210, USA
R. T. Tettenhorst
Affiliation:
Department of Geology & Mineralogy, The Ohio State University, Columbus, Ohio 43210, USA

Abstract

Quantitative estimates were made by visually matching computer-simulated with experimental X-ray powder diffractometer patterns for two samples. One was a natural mixture of dickite and nacrite in about equal proportions. The second sample contained mostly quartz with corundum and mullite in small (0.5–1%) amounts. Percentages deduced from pattern matching agreed to within ±10% of the weight fractions of the components determined by an alternative method of analysis.

Resume

Resume

Les estimations quantitatives sont effectuées par comparaison visuelle entre les diagrammes expérimentaux de diffraction de rayons X de poudre et de ceux simulés par ordinateur. Un des deux exemples est un mélange naturel de dickite et de nacrite de quantités peu près égales. Le deuxième échantillon contient essentiellement du quartz avec du corindon et de la mullite en faibles proportions (0.5–1%). Les pourcentages déduits de la comparaison des diagrammes sont en accord à ± 10% près avec les compositions pondérales dérminées par une autre méthode d'analyse.

Kurzreferat

Kurzreferat

Quantitative Mineralbestimmungen durch optischen Vergleich von gemessenen und berechneten Röntgenbeugungsdiagrammen ergaben bei Mineralgemischen eine Übereinstimmung innerhalb von ± 10% mit den Gewichtsanteilen der einzelnen Fraktionen nach anderen Methoden. Das Verfahren wurde an einem natürlichen Gemisch aus ungefähr gleichen Mengenanteilen Dickit und Nakrit sowie an einer Probe geprüft, die hauptsächlich Quartz mit wenig Korund und Mullit (0.5–1%) enthielt.

Resumen

Resumen

Se ha hecho el análisis cuantitativo por difracción de rayos X de dos muestras, comparando visualmente los diagramas de polvo experimentales con los calculados. Una de las muestras era una mezcla natural al 50% de dickita y nacrita. La segunda muestra contenia cuarzo mayoritariamente, con pequeñas cantidades de corindón y mullita (0.5–1%). Los porcentajes deducidos del ajuste de los diagramas concuerdan (±10%) con los valores determinados por otro método de análisis.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Petroleum Institute (1950) Occurrence and microscopic examination of reference clay mineral specimens. A.P.I. Project 49, Prelim. Report. No. 5, 58 pp.Google Scholar
Bailey, S.W. (1963) Polymorphism of the kaolin minerals. Am. Miner. 48, 11961209.Google Scholar
Blout, A.M., Threadgold, I.M. & Bailey, S.W. (1969) Refinement of the crystal structure of nacrite. Clays Clay Miner. 17, 185194.CrossRefGoogle Scholar
Burnham, C.W. (1964) The crystal structure of mullite. Carnegie Inst. Wash. Year Book, 62, 158165.Google Scholar
Frevel, L.K. (1978) A technique for handling preferred orientation with an adjustable sample-holder. Norelco Reporter, 25, 2224.Google Scholar
Hubbard, C.R., Evans, E.H. & Smith, D.K. (1976). The reference intensity ratio, I/Ic, for computer simulated powder patterns. J. Appl. Cryst. 9, 169174.CrossRefGoogle Scholar
International Tables for X-ray Crystallography, IV (1974) Kynoch Press, Birmingham, 99101.Google Scholar
Newnham, R.E. & De Haan, Y.M. (1962). Refinement of the a Al2O3, Ti2O3, V2O3 and Cr2O3 structures. Z. Krist. 117, 235237.CrossRefGoogle Scholar
Reynolds, R.C. & Hower, J. (1970). The nature of interlayering in mixed-layer illite-montmorillonite. Clays Clay Miner. 18, 2536.CrossRefGoogle Scholar
Smith, D.K. (1968) Computer simulation of X-ray diffractometer traces. Norelco Reporter, 15, 5765, 76.Google Scholar
Wada, K. (1965) Intercalation of water in kaolin minerals. Am. Miner. 50, 924941.Google Scholar
Wiles, D.B. & Young, R.A. (1981) A new computer program for Rietveld analysis of X-ray powder diffraction patterns. J. Appl. Cryst. 14, 149151.Google Scholar
Young, R.A., Mackie, P.E. & Von Dreele, R.B. (1977) Application of the pattern-fitting structure-refinement method to X-ray powder diffractometer patterns. J. Appl. Cryst. 10, 262269.Google Scholar
Zachariasen, W.H. & Plettinger, H.A. (1965) Extinction in quartz. Acta Cryst. 18, 710714.Google Scholar