Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T06:24:49.907Z Has data issue: false hasContentIssue false

Time-dependent changes of adsorption and wetting properties of pillared montmorillonites

Published online by Cambridge University Press:  09 July 2018

I. Dékány
Affiliation:
Department of Colloid Chemistry, University of Szeged and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, Aradi Vt. 1, H-6720 Szeged, Hungary
V. Seefeld
Affiliation:
Institute of Applied Chemistry, Berlin-Adlershof e. V., Richard-Willstätter-Str. 12, D-12484 Berlin, Germany
G. Lagaly*
Affiliation:
Institute of Inorganic Chemistry, University of Kiel, D-24098 Kiel, Germany
*

Abstract

The changes of adsorption properties of uncalcined Al-pillared montmorillonite were studied. A soda-activated bentonite from Slovakia was reacted with polymeric hydroxoaluminium salt solutions. During storagein air at room temperature for three years, the basal spacing decreased by 0.15–0.2 nm; the specific surface area was reduced by 80% and the total pore volume by 40–60%. Adsorption experiments from ethanol-cyclohexane mixtures revealed the decreasing adsorption capacity and the increasing hydrophobicity. The changing surface character was also evident in the decrease in enthalpy of immersion in ethanol from 65.3 J/g to 8.3 J/g (sample B) and from 37.8 J/g to 5.2 J/g (sample C). The alteration probably arises from gradual formation of gibbsite-like interlayers and the redistribution of charges.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnhisel, R.I. & Rich, R.I. (1963) Gibbsite formation from aluminum-interlayers in montmorillonite. Proc. Soil Sci. Soc. Am. 27, 632635.CrossRefGoogle Scholar
Berger, F., Dékány, I., Beneke, K. & Lagaly, G. (1997) Selective liquid sorption and wetting of pillared montmorillonites. Clay Miner. 32, 331339.CrossRefGoogle Scholar
Bertram, R., Gessner, W., Müller, D., Görz, H. & Schönherr, S. (1985) Zur Art der Al-Kationen in hochbasischen, hochkonzentrier ten Aluminium-chloridlösungen. Zeits. Anorg. Allg. Chem. 525, 1422.Google Scholar
Bertram, R., Gessner, W., Müller, D. & Danner, M. (1994) Charakterisierung von Al(III)-Spezies in basischen Aluminiumchlorid-Flockungsmitteln mittels Ferronreaktion bzw. 27Al-Kernresonanzspektroskopie. Acta Hydrochim. Hydrobiol. 22, 265269.CrossRefGoogle Scholar
Čapková, P., Driessen, R.A.J., Numan, M., Schenk, H., Weiss, Z. & Klika, Z. (1998) Molecular simulations of montmorillonite intercalated with aluminum complexcations. Part I : Intercalation with [Al13O4(OH)24+x(H2O)12-x](7-x)+ . Clays Clay Miner. 46, 232239.Google Scholar
Chevalier, S., Franck, R., Lambert, J.-F., Barthomeuf, D. & Suquet, H. (1992) Stability of Al-pillared saponites: evidence for disorganization during storage in air. Clay Miner. 27, 245248.CrossRefGoogle Scholar
Dékány, I. (1992) Liquid adsorption and immersional wetting on hydrophilic/hydrophobic solid surfaces. Pure Appl. Chem. 64, 14991509.Google Scholar
Dékány, I., Szántó, F., Weiss, A. & Lagaly, G. (1985) Interlamellar liquid sorption on hydrophobic silicates. Ber. Bunsenges. Phys. Chem. 89, 6267.CrossRefGoogle Scholar
Dékány, I., Szántó, F., Weiss, A. & Lagaly, G. (1986a) Interactions of hydrophobic layer silicates with alcohol-benzene mixtures. Ber. Bunsenges. Phys. Chem. 90, 422431.CrossRefGoogle Scholar
Dékány, I., Zsednai, Á., Király, Z., László, K. & Nagy, L.G. (1986b) Enthalpy of displacement of binary liquid mixtures on solid surfaces I. Coll. Surf. 19, 4766.CrossRefGoogle Scholar
Dékány, I., Zsednai, Á., Király, Z., László, K. & Nagy, L.G. (1987) Enthalpy of displacement of binary liquid mixtures on solid surfaces II. Coll. Surf. 29, 4155.CrossRefGoogle Scholar
Hsu, P.H. (1992) Reaction of OH-Al polymers with smectites and vermiculites. Clays Clay Miner. 40, 300305.Google Scholar
Janek, M., Komadel, P. & Lagaly, G. (1997) Effect of autotransformation on the layer charge of smectites determined by the alkylammonium method. Clay Miner. 32, 623632.CrossRefGoogle Scholar
Kipling, J.J. (1965) Adsorption from Solutions of Non-electrolytes. Academic Press, London.Google Scholar
Lagaly, G. (1986) Smectitic clays as ionic macromolecules. Pp. 77–140 in: Developments in Ionic Polymers, Vol. 2 (Wilson, A.D. & Prosser, H.J., editors). Elsevier Applied Science Publishers Ltd., London.Google Scholar
Lagaly, G., Schulz, O. & Zimehl, R. (1997) Dispersionen und Emulsionen. Eine Einführung in die Kolloidik feinverteilter Stoffe einschlieûlich der Tonminerale. Steinkopff, Darmstadt.Google Scholar
Matthes, W. (1999) Anwendbarkeit von Pillared Clay in der Umweltgeotechnik: Sorptionsverhalten und Langzeitstabilitä t von Al- und Zr-hydroxy- und pillared Bentoniten. Thesis, ETH Zürich, Switzerland.Google Scholar
Michot, L.J., Villiéras, F., Lambert, J.-F., Bergaoui, L., Grillet, Y. & Robert, J.-L. (1998) Surface heterogeneity in micropores of pillared clays: the limits of classical pore-filling mechanisms. J. Phys. Chem. B, 102, 34663476.CrossRefGoogle Scholar
Rouquerol, F., Rouquerol, J. & Sing, K. (1999) Adsorption by Powders and Porous Solids. Academic Press, San Diego, California, USA.Google Scholar
Sawhney, B.L. (1968) Aluminum interlayers in layer silicates: Effect of OH/Al ratio of Al solution, time of reaction, and type of structure. Clays Clay Miner. 16, 157163.Google Scholar
Schoonheydt, R.A., van den Eynde, J., Tubbax, H., Leeman, H., Stuyckens, J., Lenotte, I. & Stone, W.E.E. (1993) The Al pillaring of clays. Part I. Pillaring with dilute and concentrated Al solutions. Clays Clay Miner. 41, 598607.Google Scholar
Schoonheydt, R.A., Leeman, H., Scorpion, A., Lenotte, I. & Grobet, P. (1994) The Al pillaring of clays. Part II. Pillaring with [Al13O4(OH)24(H2O)12]7+ . Clays Clay Miner. 42, 518525.Google Scholar
Seefeld, V., Bertram, R., Starke, P. & Gessner, W. (1988) Zum Verhalten des tridekameren Oxo-hydroxo-Al-Kations (Al13) bei der Herstellung von “pillared clays”. Silikattechnik, 39, 239241.Google Scholar
Singh, S.S. & Kodama, H. (1990) Structural evolution of a polynuclear hydroxyaluminum-montmorillonite complex with an 18.8 Å pillared structure on aging. Proc. 9th Int. Clay Conf., Strasbourg, 6978.Google Scholar
Witkowski, S., Dyrek, K., Sojka, Z., Djéga-Mariagassou, G., Fijał, J. & Kłapyta, Z. (1994) Structural heterogeneity of pillared fluorohectorite: an XRD, HRTEM and EDX study. Clay Miner. 29, 743749.Google Scholar