Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T13:43:27.776Z Has data issue: false hasContentIssue false

Synthesis and characterization of Na-X, Na-A and Na-P zeolites and hydroxysodalite from metakaolinite

Published online by Cambridge University Press:  09 July 2018

D. Novembre
Affiliation:
Dipartimento di Geotecnologie per l'Ambiente e il Territorio, Università degli Studi “G. D'Annunzio”, Chieti, Italy
B. di Sabatino
Affiliation:
Dipartimento di Geotecnologie per l'Ambiente e il Territorio, Università degli Studi “G. D'Annunzio”, Chieti, Italy
D. Gimeno*
Affiliation:
Departamento de Geoquimica, Petrologia i Prospecciό Geologica, Universitat de Barcelona, Spain
C. Pace
Affiliation:
Dipartimento di Geotecnologie per l'Ambiente e il Territorio, Università degli Studi “G. D'Annunzio”, Chieti, Italy

Abstract

The present work deals with the hydrothermal synthesis of Na zeolites (Na-A, Na-X and Na-P) and hydroxysodalite using kaolinite calcined at 650°C as starting material. The focus was on definition of the most favourable conditions for the synthesis of zeolite Na-A and Na-X from metakaolin in order to economize on both energy (i.e. synthesis temperatures) and reaction time and to enlarge the field of pure and isolated synthesized phases. Metakaolin was mixed with calculated amounts of NaOH solution and sodium silicate and five sets of experiments were carried out at ambient pressure and 68±0.1°C varying the SiO2/Al2O3 ratio from 2.2 to 7. Optimal conditions for crystallization of Na-A zeolite from kaolinite were reached with a SiO2/Al2O3 ratio of 2.2 plus 4 M NaOH without adding sodium silicate; transformation into hydroxysodalite develops after ∼8 h. For SiO2/Al2O3 ratios between 4 and 7, crystallization of the separate Na-X zeolite phase could be achieved and transformation into Na-P and hydroxysodalite occurred after 382 h and 190 h, respectively. For SiO2/Al2O3 ratios between 5 and 6, transformation of metakaolin into Na-X plus Na-A, hydroxysodalite and Na-P occurred, and the field within which Na-A and Na-X zeolite exists overlapped that of the other zeolites.

The products of synthesis were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma optical emission spectrometry (ICP-OES), infrared spectroscopy (IR) and thermal analyses (TG-DTG-DTA).

Obtaining pure Na-A and Na-X zeolite from kaolinite treated at low metakaolinitization temperature (650°C) and low hydrothermal synthesis temperature (68°C) represents a considerable economic advantage in terms of both energy and time.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased 2010

References

Abdmeziem-Hamoudi, K. & Siffert, B. (1989) Synthesis of molecular sieve zeolites from a smectite-type clay material. Applied Clay Science, 4, 19.Google Scholar
Akolekar, D., Chaffee, A. & Howe, R.F. (1997) The transformation of kaolin to low-silica X zeolite. Zeolites, 19, 359365.CrossRefGoogle Scholar
Alkan, M., Hopa C, Yilmaz, Z. & Guler, H. (2005) The effect of alkali concentration and solid/liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolinite. Microporous & Mesoporous Materials, 86, 176184.Google Scholar
Aznar, A.J. & La Iglesia, A. (1985) Obtencion de zeolitas a partir de arcillas aluminosas espanolas. Boletin Geologico & Minero, 96, 541549.Google Scholar
Boukadir, D., Bettahar, N. & Derriche, Z. (2002) Etude de la synthese des zeolites 4A et HS a partir de produits naturels. Annales de Chirnie-Science des Materiaux, 27, 113.CrossRefGoogle Scholar
Breck, D.W. (1984) Zeolite Molecular Sieves. Structure, Chemistry and Use. Robert, E. Krieger Publishing Company, Malabar, Florida, 771 pp.Google Scholar
Chandrasekhar, S. (1996) Influence of metakaolinization temperature on the formation of zeolite 4A from kaolin. Clay Minerals, 31, 253261.CrossRefGoogle Scholar
Chandrasekar, S. & Pramada, P.N. (1999) Investigation on the synthesis of zeolite Na-X from Kerala kaolin. Journal of Porous Materials, 6, 283297.CrossRefGoogle Scholar
Colina, F.G. & Llorens, J. (2007) Study of the dissolution of dealuminated kaolin in sodium-potassium hydroxide during the gel formation step in zeolite X synthesis. Microporous & Mesoporous Materials, 100, 302311.Google Scholar
Coombs, D.S., Ellis, A.J., Fyfe, W.S. & Taylor, A.M. (1959) The zeolite facies, with comments on the interpretation of hydrothermal syntheses. Geochimica Cosmochimica Acta, 17, 53107.CrossRefGoogle Scholar
Costa, E., de Lucas, A., Uguina, M.A. & Ruiz, J.C. (1988) Synthesis of 4° zeolite from calcined kaolins for use in detergents. Industrial & Engineering Chemistry Research, 27, 12911296.CrossRefGoogle Scholar
Covian, I. (1991) Sintesis de zeolite HXpara su uso en detergentes. Ph.D. Dissertation, Universidad Complutense de Madrid, Spain, 392 pp.Google Scholar
De Lucas, A., Uguina, M.A., Covian, I. & Rodriguez, L. (1992) Synthesis of 13X zeolite from calcined kaolin and sodium silicates for use in detergents. Industrial & Engineering Chemistry Research, 31, 21342140.CrossRefGoogle Scholar
Demortier, A., Gobelz, N., Lelieur, J.P & Duhayon, C. (1999) Infrared evidence for the formation of an intermediate compound during the synthesis of zeolite Na-A from metakaolin. International Journal of Inorganic Materials, 1, 129134.Google Scholar
Felsche, J., Luger, S. & Baerlocher, Ch. (1986) Crystal structures of the hydro-sodalite Na6[AlSiO4]6.8H2O and of the anhydrous sodalite Na6[AlSiO4]6 . Zeolites, 6, 367372.Google Scholar
Flaningen, E.M., Khatami, H.A. & Szymanski, H.A. (1971) Infrared structural study of zeolite frame-works. Molecular Sieve Zeolites, 16, 201229.Google Scholar
Fotovat, F., Kazemian, H. & Kazemeini, M. (2009) Synthesis of Na-A and faujasitic zeolites from high silicon fly ash. Materials Research Bulletin, 44, 913917.Google Scholar
Gramlich, V. & Meier, W.M. (1971) The crystal structure of hydrated NaA: A detailed refinement of a pseudosymmetric zeolite structure. Zeitschrift fur Kristallographie, 133, 134149.Google Scholar
Gualtieri, A.F. (2000) Accuracy of XRPD QPA using the combined Rietveld-RIR method. Journal of Applied Crystallography, 33, 267278.Google Scholar
Gualtieri, A.F. (2001) Synthesis of sodium zeolites from a natural halloysite. Physics and Chemistry of Minerals, 28, 719728.Google Scholar
Gualtieri, A., Norby, P., Artioli, G. & Hanson, J. (1997) Kinetic of formation of zeolite Na-A [LTA] from natural kaolinites. Physics and Chemistry of Minerals, 24, 191199.CrossRefGoogle Scholar
Heller-Kallai, L. & Lapides, I. (2007) Reactions of kaolinites and metakaolinites with NaOH—comparison of different samples (Part 1). Applied Clay Science, 35, 99107.CrossRefGoogle Scholar
Imai, N., Terashima, S., Itoh, S. & Ando, A. (1995) 1994 compilation values for GSJ reference samples, Igneous Rocks series. Geochemical Journal, 29, 9195.Google Scholar
Larson, A.C. & Von Dreele, R.B. (1997) GSAS: General Structure Analysis System. Document Laur 86-748, Los Alamos National Laboratory.Google Scholar
Lee, M.J., Cho, J., Huh, H. & Choi, B. (1994) Studies on synthesis of X-type zeolite from the natural morde-nite. Journal of the Korean Ceramic Society, 31, 15701576.Google Scholar
Madani, A., Aznar, A., Sanz, J. & Serratosa, J.M. (1990) 29 Si and 27 A1 NMR study of zeolite formation from alkali-leached kaolinites. Influence of thermal pre-activation. Journal of Physical Chemistry, 94, 760765.Google Scholar
Maia, A.A.B., Angelica, R.S. & Neves, R.F. (2011) Use of industrial kaolin waste from the Brazilian Amazon region for synthesis of zeolite A. Clay Minerals, 46, 127136.Google Scholar
Novembre, D., Di Sabatino, B., Gimeno, D., Garcia Valles, M. & Martínez-Manent, S. (2004) Synthesis of Na-X zeolites from tripolaceous deposits (Crotone, Italy) and volcanic zeolitized rocks (Vico Volcano, Italy). Microporous & Mesoporous Materials, 75, 111.CrossRefGoogle Scholar
Novembre, D., Di Sabatino, B. & Gimeno, D. (2005) Synthesis of Na-A zeolite from 10° halloysite and a new crystallization kinetic model for the transformation of Na-A into HS zeolite. Clays & Clay Minerals, 53, 2836.Google Scholar
Querol, X., Plana, F., Alastuey, A., López-Soles, A., Andrés, J.M., Juan, R., Ferrer, P. & Ruiz, C.R. (1997) A fast method for recycling fly ash: microwave-assisted zeolite synthesis. Enviromental Science Technology, 31, 25272533.Google Scholar
Rees, L.V.C. & Chandrasekhar, S. (1993) Formation of zeolite from the system Na2O-Al2O3-SiO2-H2O in alkaline medium (pH>10). Zeolites, 13, 524533.CrossRefGoogle Scholar
Rios, C.A., Williams CD. & Fullen, M.A. (2009) Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods. Applied Clay Science, 42, 446454.Google Scholar
Robert, J.L., Delia Ventura, G. & Thauvin, G. (1989) The infrared OH-stretching region of synthetic richterites in the system Na2O-K2O-CaO-MgO-SiO2-H2O-HF. European Journal of Mineralogy, 1, 203211.Google Scholar
Rocha, J. & Klinowsky, J. (1991) Synthesis of zeolite Na-A from metakaolinite revisited. Journal of the Chemical Society, Faraday Transactions, 87, 30913097.CrossRefGoogle Scholar
Rocha, J., Adams, J.M. & Klinowsky, J. (1990) The rehydration of metakaolinite to kaolinite: evidence from solid-state NMR and cognate techniques. Journal of Solid State Chemistry, 89, 260274.CrossRefGoogle Scholar
Sanhueza, V., Kelm, U. & Cid, R. (1999) Synthesis of molecular sieves from Chilean kaolinites: i. synthesis of NaA type zeolites. Journal of Chemical Technology and Biotechnology, 74, 358363.Google Scholar
Shibata, W. & Seff, K. (1997) Crystal structure of a sodium sorption complex of zeolite X containing linear Na2+ 3 clusters. Journal of Physical Chemistry B, 101, 90229026.Google Scholar
Singer, A. & Berkgaut, V. (1995) Cation exchange properties of hydrothermally treated coal fly ash. Enviromental Science Technology, 29, 17481753.Google Scholar
Szostak, R. (1989) Molecular Sieves—Principles of Synthesis and Identification, 1st edition. Van Nostrand Reinhold, New York.Google Scholar
Tanaka, H., Sakai, Y. & Hino, R. (2002) Formation of Na-A and Na-X zeolites from waste solutions in conversion of coal fly ash to zeolites. Materials Research Bulletin, 37, 18731884.Google Scholar
Terashima, S., Taniguchi, M., Mikoshiba, M. & Imai, N. (1998) Preparation of two new GSJ geochemical reference materials: Basalt JBl-b and Coal Fly Ash JCFA-1. Geostandards and Geoanalytical Research, 22, 113117.Google Scholar
Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210213.Google Scholar
Zhao, H., Deng, Y., Harsh, J.B., Flury, M. & Boyle, IS, (2004) Alteration of kaolinite to cancrinite and sodalite by simulated Hanford tank waste and its impact on cesium retention. Clays and Clay Minerals, 52, 113.Google Scholar