Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T04:01:13.209Z Has data issue: false hasContentIssue false

Surface modification of bentonites: I. Betaine montmorillonites and their rheological and colloidal properties

Published online by Cambridge University Press:  09 July 2018

C. U. Schmidt
Affiliation:
Institute of Inorganic Chemistry, University of Kiel, D-24098 Kiel, Germany
G. Lagaly*
Affiliation:
Institute of Inorganic Chemistry, University of Kiel, D-24098 Kiel, Germany
*
2Corresponding author

Abstract

Montmorillonite was modified by replacing the exchangeable cations with betaines

(CH3)3N+ - (CH2)n - COO-M+ (n = 3, 5, 7, 10)

The betaine derivatives delaminated in water and formed a colloidal dispersion. Air-drying of this material yielded hard pieces which were difficult to redisperse. The dried material became redispersible in water when the Na ions (counterions to the carboxyl groups) were replaced by Li ions. Colloidal dispersions of this material were more stable against salts than Li+- or Na+ - montmorillonite. Extremely high LiCl concentrations (>1 mol/l) were needed to coagulate the betaine derivatives (n>5) in the presence of diphosphate. The increased salt stability resulted from lyospheres around the silicate layers or thin packets of them which reduced the van der Waals attraction. Addition of organic solvents destabilized the dispersion by compressing the diffuse ionic layer (DLVO theory). The delaminated particles then aggregated to small flocs which settled very slowly. Neither band-type structures nor cardhouses were formed at conditions comparable to network formation and stiffening of Li- and Na-montmorillonite dispersions. Rheological measurements revealed the liquefying action of the betaines. Dispersions of butyrobetaine montmorillonite (15 g solid/l) revealed a relative viscosity (related to the dispersion medium water) ηrel ≈ 2. The longer chain derivatives showed a value slightly >1 whereas Li+-montmorillonite had ηrel = 8. Yield values were not formed at pH ≈ 7. Only at acidic conditions did the butyrobetaine montmorillonite dispersion showed a small yield value (<200 mPa).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: Wella AG, D-64274 Darmstadt, Germany

References

Adachi, Y., Nakaishi, K. & Tamaki, M. (1998) Viscosity of a dilute suspension of sodium montmorillonite in a electrostatically stable condition. J. Coll. Interf. Sci. 198, 100105.CrossRefGoogle Scholar
Bain, D.C. & Smith, B.F.L. (1987) Chemical analysis. Pp. 248-274 in: A Handbook of Determinative Methods in Clay Mineralog. (Wilson, M.J., editor). Blackie, Glasgow.Google Scholar
Barak, A.J. & Tuma, D.J. (1979) A simplified procedure for the determination of betaine in liver. Lipids. 14, 860863.CrossRefGoogle ScholarPubMed
Bóhmer, M.R. & Koopal, L.K. (1992) Adsorption of ionic surfactants on variable-charge surfaces. I. II. Langmuir. 8, 26492659, 2660-2665.CrossRefGoogle Scholar
Braganza, L.F., Crawford, R.J., Smalley, M.V. & Thomas, R.K. (1990a) Swelling of n-butylammonium vermiculite in water. Clays Clay Miner. 38, 9096.CrossRefGoogle Scholar
Braganza, L.F., Crawford, R.J., Smalley, M.V. & Thomas, R.K. (1990b) A study of the swelling of nbutylammonium vermiculite in water by neutron diffraction. Progr. Coll. Polym. Sci. 81, 232237.Google Scholar
Brandenburg, U. & Lagaly, G. (1988) Rheological properties of s∼odium montmorillonite dispersions. Appl. Clay Sci. 3, 263279.CrossRefGoogle Scholar
Derjaguin, B.V., Churaev, N.V. & Muller, V.M. (1987) Surface Forces. Consultants Bureau, New York, London.Google Scholar
Frey, E. & Lagaly, G. (1979) Selective coagulation in mixed colloidal suspensions. J. Coll. Interf. Sci. 70, 4655.Google Scholar
Garrett, W.G. & Walker, G.F. (1962) Swelling of some vermiculite-organic complexes in water. Clays Clay Miner. 9, 557567.Google Scholar
Gotoh, K., Inoue, T., Inada, J.M. & Tagawa, M. (1998) Stabilizing effect of monoamino-monocarboxylic acids for aqueous colloidal dispersions. J. Disp. Sci. Techn. 19, 475491.Google Scholar
Gregory, J. (1975) Interaction of unequal double layers at constant charge. J. Coll. Interf. Sci. 51, 4451.Google Scholar
Groβmann, G.H. & Ebert, K.H. (1981) Formation of clusters in 1-propanol/water mixtures. Ber. Bunsenges. Phys. Chem. 85, 10261029.CrossRefGoogle Scholar
Güven, N. (1992) Rheological aspects of aqueous smectite suspensions. Pp. 81-126 in: Clay-water Interface and its Rheological Implications. (Gùven, N. & Pollastro, R.M., editors) CMS workshop lectures vol. 4. Clay Minerals Society, Boulder, Colorado, USA.Google Scholar
Güven, N. & Pollastro, R.M. (editors) (1992) Clay-water Interface and its Rheological Implications. CMS workshop lectures vol. 4. The Clay Minerals Society, Boulder, Colorado, USA.Google Scholar
Helmy, A.K. & Ferreiro EA. (1974) Flocculation of NF+ 4-montmorillonite by electrolytes. Electroanal. Chem. Interf. Electrochem. 57, 103112.CrossRefGoogle Scholar
Hogg, R., Healy, T.W. & Fuerstenau, D.W. (1966) Mutual coagulation of colloidal dispersions. Trans. Farad. Soc. 62, 16381651.CrossRefGoogle Scholar
Houben-Weyl (1987) Organische Reaktionen. Thieme Verlag, Stuttgart.Google Scholar
Jasmund, K. & Lagaly, G. (editors) (1993) Tonminerale und Tone - Struktur, Eigenschaften, Anwendungen und Einsatz in Industrie und Umwelt. Steinkopff-Verlag Darmstadt, Germany.Google Scholar
Jenny, H. & Reitemeier, R.F. (1935) Ionic exchange in relation to the stability of colloidal systems. J. Phys. Chem. 39, 593604.Google Scholar
Kahn, A. (1958) The flocculation of sodium montmorillonite by electrolytes. J. Coll. Interf Sci. 13, 5160.CrossRefGoogle Scholar
Kiràly, Z., Turi, L., Dékàny, I., Bean, K. & Vincent, B. (1996) The van der Waals attraction between Stóber silica particles in a binary solvent system. Coll. Polym. Sci. 274, 779787.CrossRefGoogle Scholar
Lagaly, G. (1987) Water and solvents on surfaces bristling with alkyl chains. Pp. 229-239 in: Interaction of Water in Ionic and Non-ionic Hydrates. (Kleeberg, H., editor) Springer-Verlag, Berlin, Heidelberg, Germany.Google Scholar
Lagaly, G. (1989) Principles of flow of kaolin and bentonite dispersions. Appl. Clay Sci. 4, 105123.Google Scholar
Lagaly, G. (1993) From clay minerals to colloidal clay mineral dispersions. Pp. 427-494 in: Coagulation and Flocculation. Theory and Application. (Dobias, B., editor). Marcel Dekker, Inc., New York.Google Scholar
Lagaly, G. (1994) Layer charge determination by alkylammonium ions. Pp. 1-46 in: Charge Characteristics of 2:1 Clay Mineral. (Mermut, A., editor). CMS workshop, vol. 6, The Clay Minerals Society, Boulder, Colorado, USA.Google Scholar
Lagaly, G. & Malberg, R. (1990) Disaggregation of alkylammonium montmorillonites in organic solvents. Coll. Surf. 49, 1127.Google Scholar
Lagaly, G., Schulz, O. & Zimehl, R. (1997) Dispersionen und Emulsionen: eine Einfuhrung in die Kolloidik feinverteilter Stoffe einschliefilich der Tonminerale. Steinkopff Verlag, Darmstadt, Germany.Google Scholar
Lagaly, G., Schón, G. & Weiss, A. (1972) Über den Einfluβ einer unsymmetrischen Ladungsverteilung auf die Wechselwirkung zwischen plâttchenfórmigen Kolloidteilchen. Kolloid Z. Z. Polymère. 250, 667674.CrossRefGoogle Scholar
Machula, G., Dékány, I. & Nagy, L.G. (1993) The properties of the adsorption layer and the stabilization of aerosil dispersions in binary liquids. Coll. Surf. 71 A, 241-254.Google Scholar
Marosi, T., Dékány, I. & Lagaly, G. (1994) Displacement processes on hydrophilic/hydrophobic surfaces in 1- propanol-water mixtures. Coll. Polym. Sci. 272, 11361142.CrossRefGoogle Scholar
McCormack, D., Carnie, S.L. & Chan, D.Y.C. (1995) Calculations of electric double-layer force and interaction free energy between dissimilar surfaces. J. Coll. Interf. Sci. 169, 177196.CrossRefGoogle Scholar
Napper, D.H. (1983) Polymeric Stabilization of Colloidal Dispersions. Academic Press, London.Google Scholar
Ottewill, R.H. & Walker, T. (1968). The influence of nonionic surface active agents on the stability of polystyrene latex dispersions. Kolloid Z. Z. Polymère, 111, 108-116.Google Scholar
Permien, T. & Lagaly, G. (1994a) The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds. I. Flow behaviour of sodium montmorillonite in water-alcohol. Clay Miner. 29, 751760.Google Scholar
Permien, T. & Lagaly, G. (1994b) The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds. III. The effect of alcohols on the coagulation of sodium montmorillonite. Coll. Polym. Sci. 272, 13061312.Google Scholar
Pierre, A.C. (1992) The gelation of colloidal platelike particles. J. Can. Ceram. Soc. 61, 135138.Google Scholar
Rausell-Colom, J.A. (1964) Small angle X-ray diffraction study of the swelling of butylammonium vermiculite. Trans. Faraday Soc. 60, 190201.Google Scholar
Rausell-Colom, J.A. & Salvador, P.S. (1971a) Complexes vermiculite-aminoacides. Clay Miner. 9, 139149.Google Scholar
Rausell-Colom, J.A. & Salvador, P.S. (1971b) Gélification de vermiculite dans des solutions d’ acide y-amino butyrique. Clays Clay Miner. 9, 193208.Google Scholar
Rausell-Colom, J.A., Saez-Aunion, J. & Pons, C.H. (1989) Vermiculite gelation: structural and textural evolution. Clay Miner. 24, 459478.CrossRefGoogle Scholar
Samii, A.M. & Lagaly, G. (1987) Adsorption of nuclein bases on smectites. Proc. Int. Clay Conf, Denver. 363-369.Google Scholar
Schramm, L.L. & Kwak, J.C.T. (1982) Influence of exchangeable cation compositon on the size and shape of montmorillonite particles in dilute suspensions. Clays Clay Miner. 30, 4048.CrossRefGoogle Scholar
Smalley, M.V. (1994) Electrical theory of clay swelling. Langmuir. 10, 28842891.Google Scholar
Stul, M.S. & van Leemput, L. (1982) Particle-size distribution, cation exchange capacity and charge density of deferrated montmorillonites. Clay Miner. 17, 209215.Google Scholar
Swartzen-Allen, L.S. & Matijevié E. (1976) Colloid and surface properties of clay suspensions. III. Stability of montmorillonite and kaolinite. J. Coll. Interf. Sci. 56, 159167.Google Scholar
Thorn, L.H., de Keizer, A., Koopal, L.K., Blokzijl, W. & Lyklema, H. (1998) Polymer adsorption on a patchwise heterogeneous surface. Progr. Coll. Polym. Sci. 109, 153160.Google Scholar
Tori, K. & Nakagawa, T. (1963) Colloid chemical properties of ampholytic surfactants. Kolloid Z. Z. Polymèr. 189, 5055.Google Scholar
Tributh, H. & Lagaly, G. (1986) Aufbereitung und Identifizierung von Boden- und Lagerstâttentonen. I. Aufbereitung der Proben im Labor. GITFachzeitschrifi fur das Laboratorium. 30, 524529.Google Scholar
Usui, S. (1973) Interaction of electrical double layers at constant surface charge. J. Coll. Interf. Sci. 44, 107113.Google Scholar
van Olphen, H. (1977) Clay Colloid Chemistry. John Wiley & Sons, New York.Google Scholar
Wiese, G.R. & Healy, T.W. (1970) Effect of particle size on colloid stability. Trans. Faraday Soc. 66, 490499.Google Scholar
Wu, X. & van de Ven, T.G.M. (1996) Characterization of hairy latex particles with colloidal particle scattering. Langmuir. 12, 38593865.CrossRefGoogle Scholar