Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T13:12:36.515Z Has data issue: false hasContentIssue false

Structural and chemical heterogeneity of layer silicates and clay minerals

Published online by Cambridge University Press:  09 July 2018

V. A. Drits*
Affiliation:
Geological Institute, Russian Academy of Sciences, 7 Pyzhevsky Street, 109017Moscow, Russia
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Different forms of structural and chemical heterogeneity are considered including mixed-layer minerals, disordered layer structures containing rotational and translational stacking faults, interstratification of trans-vacant (tv) and cis-vacant (cv) layers in true micas, illites and illitesmectite (I-S), short-range order in isomorphous cation distribution etc.

Because determination of various structural and chemical imperfections requires elaboration of new diffraction and spectroscopic methodologies, special attention is paid to recent achievements in the development of new methodological approaches such as a multispecimen simulation of experimental X-ray diffraction (XRD) patterns from mixed-layer minerals, with account taken of layer-thickness fluctuations of the second type and possible difference between structures of outer and core layers; experimental determination of thickness distribution of illite crystals by HRTEMand the modified Bertaut-Warren-Averbach technique; XRD and thermal methods for determination of cv and tv layers in true micas, illites and I-S; generalization of Méring's rules to account for the behaviour of non-basal reflections for any defective structure in which two translations are irregularly interstratified; various ab initio calculations devoted to modelling infrared OH vibrations, octahedral cation distribution in dioctahedral 2:1 layer silicates, etc. It is shown that these recentlydeveloped methodologies have revealed new diversity in the structural and chemical heterogeneity of phyllosilicates and clay minerals, provided new insight into the structural mechanisms of their transformation in different geological environments, and discovered new natural processes.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2003 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

References

Altaner, S.P. & Ylagan, R.F. (1997) Comparison of structural models of mixed-layer illite-smectite and reaction mechanisms of smectite illitization. Clays and Clay Minerals, 45, 517 533.CrossRefGoogle Scholar
Arkai, P., Merriman, R.J., Roberts, B., Peacor, D.R. & Toth, M. (1996) Crystallinity, crystallite size and lattice strain of illite-muscovite and chlorite: comparison of X.D. and T.M. data for diagenetic to epizonal pelites. European Journal of Mineralogy, 8, 11191138.CrossRefGoogle Scholar
Bailey, S.W. (1984) Crystal chemistry of the true mica. Pp. 13 –66 in. Micas (Bailey., S.W. editor). Reviews in Mineralogy 13. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Bailey, S.W., Banfield, J.F., Barker, W.W. & Katchen, G. (1995) Dozyite, a 1:1 regular interstratification of serpentine and chlorite. American Mineralogist, 80, 6577.CrossRefGoogle Scholar
Banfield, J.F. & Murakami, T. (1998) Atomic-resolution transmission microscope evidence for the mechanism by which chlorite weathers to 1:1 semi-regular chlorite-vermiculite. American Mineralogist, 83, 348357.CrossRefGoogle Scholar
Beaufort, D., Baronnet, A., Lanson, B. & Meunier, A. (1997) Corrensite: A single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Cony deep drill hole. American Mineralogist, 82, 109124.CrossRefGoogle Scholar
Besson, G. & Drits, V.A. (1997a) Refined relationships between chemical composition of dioctahedral finedispersed mica minerals and their infrared spectra in the OH-stretching region. Part 1. Identification of the stretching bands. Clays and Clay Minerals, 45, 158169.CrossRefGoogle Scholar
Besson, G. & Drits, V.A. (1997b) Refined relationships between chemical composition of dioctahedral finedispersed mica minerals and their infrared spectra in the OH-stretching region. Part 2. The main factors affecting OH-vibrations and quantitative analysis. Clays and Clay Minerals, 45, 170183.CrossRefGoogle Scholar
Besson, G., Bookin, A.S., Dainyak, L.G., Rautureau, M., Tsipursky, S.I., Tchoubar, C. & Drits, V.A. (1983a) Use of diffraction and Mössbauer methods for the structural and crsytallochemical characterization of nontronites. Journal of Applied Crystallography, 16, 374383.CrossRefGoogle Scholar
Besson, G., Cleaser, R. & Tchoubar, C. (1983b) Le cesium revelateur de structure des smectites. Clay Minerals, 18, 1119.CrossRefGoogle Scholar
Bish, D.L. & Chipera, S.J. (1998) Variation of kaolinite defect structure with particle size. Abstracts, Annual Meeting of the Clay Minerals Society, Cleveland, USA.Google Scholar
Bookin, A.S., Drits, V.A., Plançon, A. & Tchoubar, C. (1989) Stacking faults in kaolin minerals in the light of real structural features. Clays and Clay Minerals, 37, 297 307.CrossRefGoogle Scholar
Brindley, G.W. & Méring, J. (1951) X-ray diffraction by disordered layer structure. Acta Crystallographica, 4, 441447.CrossRefGoogle Scholar
Chukhrov, F.V., Gorshkov, A.I., Vitovskaya, I.V., Drits, V.A. & Sivtsov, A.V. (1982) On the nature of Co-Ni asbolane. Pp. 230239 in. Ore Genesis – the State of the Art (Amstutz., G.G. Coresy., A.F. Franzel, G. & Zimmermann., R.A. editors). Springer-Verlag, Berlin.CrossRefGoogle Scholar
Chukhrov, F.V., Gorshkov, A.I. & Drits, V.A. (1989) Hypergenic Manganese Oxides. Nauka, Moscow, 298 pp.Google Scholar
Cuadros, J. (2002) Structural insights from the study of Cs-exchanged smectites submitted to wetting-anddrying cycles. Clay Minerals, 37, 473486.CrossRefGoogle Scholar
Cuadros, J. & Altaner, S.P. (1998a) Characterization of mixed-layer illite-smectite from bentonites using microscopic, chemical and X-ray methods: constrains on the smectite-to-illite transformation mechanism. American Mineralogist, 83, 762 774.CrossRefGoogle Scholar
Cuadros, J. & Altaner, S.P. (1998b) Compositional and structural features of the octahedral sheet in mixedlayer illite-smectite from bentonites. European Journal of Mineralogy, 10, 111124.CrossRefGoogle Scholar
Cuadros, J., Sainz-Diaz, C.I., Ramirez, R. & Hernandez-Laguna, A. (1999) Analysis of Fe segregation in the octahedral sheet of bentonitic illite-smectite by means of F.I., 27 Al M.S. NMR and reverse Monte Carlo simulations. American Journal of Science, 299, 293308.CrossRefGoogle Scholar
Dainyak, L.G. & Drits, V.A. (1987) Interpretation of Mössbauer spectra of nontronite, celadonite, and glauconite. Clays and Clay Minerals, 35, 363 372.CrossRefGoogle Scholar
Dainyak, L.G., Dainyak, B.A., Bookin, A.S. & Drits, V.A. (1984a) Interpretation of Mössbauer spectra of dioctahedral Fe3+-containing 2:1 layer silicates. I. Computation of electric field gradients on the basis of structural modeling. Kristallografia, 29, 94100 (in Russian).Google Scholar
Dainyak, L.G., Bookin, A.S. & Drits, V.A. (1984b) Interpretation of the Mössbauer spectra of dioctahedral Fe3+-contai ning 2:1 layer silicat es. II. Nontronit e. Kristallografia, 29, 304311.(in Russian).Google Scholar
Dainyak, L.G., Bookin, A.S. & Drits, V.A. (1984c) Interpretation of Mössbauer spectra of dioctahedral Fe3+-containing 2:1 layer silicates. III. Celadonite. Kristallografia, 29, 312321 (in Russian).Google Scholar
Dainyak, L.G., Drits, V.A. & Heifits, L.M. (1992) Computer simulation of cation distribution in dioctahedral 2:1 layer silicates using IR-data: Application to Mössbauer spectroscopy of a glauconite sample. Clays and Clay Minerals, 40, 470479.CrossRefGoogle Scholar
De Grave, E., Vandenburwaene, J. & Elewaut, E. (1985) An 57Fe Mössbauer effect study on glauconites from different locations in Belgium and northern France. Clay Minerals, 20, 176179.CrossRefGoogle Scholar
Drits, V.A. (1985) Some aspects of the study of the real structures of clay minerals. Proceedings of the 5th Meeting of the European Clay Groups, Prague 1983 (Konta, J., editor) pp. 3342.Google Scholar
Drits, V.A. (1987a) Electron Diffraction and High Resoluti on Electron Microscopy of Mineral Structures. Springer-Verlag, Berlin, 304 pp.CrossRefGoogle Scholar
Drits, V.A. (1987b) Mixed layer minerals: diffraction methods and structural features. Proceedings of the International Clay Conference, Denver, July 1985. (Schutz., L.G. van Olphen, H. & Mumpton., F.A. editors). The Clay Minerals Society, Bloomington, Indiana, pp. 33 –45.Google Scholar
Drits, V.A. (1997) Mixed-layer minerals. Pp. 153190 in. Modular Aspects of Minerals (Merlino, S., editor). EMU Notes in Mineralogy 1. Eötvös University Press, Budapest.CrossRefGoogle Scholar
Drits, V.A. & Bookin, A.S. (2001) Crystal structure and X-ray identification of Layered Double Hydroxides. Pp. 2075 in. Layered Double Hydroxide: Present and Future (Rives, V. editor). Novo Science Publishers, New York. Google Scholar
Drits, V.A. & McCarty, D. (1996) A simple technique for a semi-quantitative determination of the trans-vacant and cis-vacant 2:1 layer contents in illites and illitesmectites. American Mineralogist, 81, 852863.CrossRefGoogle Scholar
Drits, V.A. & Plançon, A. (1994) Expert system for structural characterization of phyllosilicates: II. Applic ation to mixed-l ayer mine rals. Clay Minerals, 29, 3945.CrossRefGoogle Scholar
Drits, V.A. & Sakharov, B.A. (1976) X-ray Structural Analysis of Mixed-Layer Minerals. Nauka, Moscow, 256 pp. (in Russian).Google Scholar
Drits, V.A. & Tchoubar, C. (1990) X-ray Diffraction of Disordere d Lamellar Structure s. Theory and Application to Microdivided Silicates and Carbons. Springer Verlag, Berlin, 242 pp.Google Scholar
Drits, V.A., Plançon, A., Sakharov, B.A., Besson, G., Tsipursky, S.I. & Tchoubar, C. (1984) Diffraction effects calculated for structural models of Ksaturated montmorillonite containing different types of defects. Clay Minerals, 19, 541562.Google Scholar
Drits, V.A., Weber, F., Salyn, A. & Tsipursky, S. (1993) X-ray identification of 1M illite varieties. Clays and Clay Minerals, 28, 185207.CrossRefGoogle Scholar
Drits, V.A., Varaxina, T.V., Sakharov, B.A. & Plançon, A. (1994) A simple technique for identification of onedimensional powder X-ray diffraction patterns for mixed-layer illite-smectites and other interstratified minerals. Clays and Clay Minerals, 42, 382390.CrossRefGoogle Scholar
Drits, V.A., Besson, G. & Muller, F. (1995) Structural mechanism of dehydroxylation of cis-vacant 2:1 layer silicates. Clays and Clay Minerals, 43, 718731.CrossRefGoogle Scholar
Drits, V.A., Salyn, A.L. Šuchá, V. (1996) Dynamic and mechanism in the structural transformation of illitesmectites from Dolna Ves hydrothermal deposits. Clays and Clay Minerals, 44, 181190.CrossRefGoogle Scholar
Drits, V.A., Sakharov, B.A., Lindgreen, H. & Salyn, A. (1997a) Sequential structural transformation of illitesmectite- vermiculite during diagenesis of Upper Jurassic shales from North Sea and Denmark. Clay Minerals, 32, 351 372.CrossRefGoogle Scholar
Drits, V.A., Lindgreen, H. & Salyn, A. (1997b) Determination by X-ray diffraction of content and distribution of fixed ammonium in illite/smectite. Application to North Sea illite-smectites. American Mineralogist, 82, 7987.CrossRefGoogle Scholar
Drits, V.A., Dainyak, L.G., Muller, F., Besson, G. & Manceau, A. (1997c) Isomorphous cation distribution in celadonites, glauconites and Fe-illites determined by Infrared, Mössbauer and E.A.S spectroscopy. Clay Minerals, 32, 153180.CrossRefGoogle Scholar
Drits, V.A., Środoń, J. & Eberl, D.D. (1997d) XRD measurement of mean illite crystallite thickness: Reappraisal of the Kübler index and the Scherrer equation. Clays and Clay Minerals, 45, 461475.CrossRefGoogle Scholar
Drits, V.A., Eberl, D.D. & Środoń, J. (1998a) XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique. Clays and Clay Minerals, 46, 3850.CrossRefGoogle Scholar
Drits, V.A., Lindgreen, H., Salyn, A.L., Ylagan, R. & McCarty, D.K. (1998b) Semiquantitative determination of trans-vacant and cis-vacant 2:1 layers in illites and illite-smectites by thermal analysis and X-ray diffraction. American Mineralogist, 83, 3173.CrossRefGoogle Scholar
Drits, V.A., Lanson, B., Gorshkov, A.I. & Manceau, A. (1998c) Sub- and super-structure of four-layer Caexchanged birnessite. American Mineralogist, 83, 97-118.CrossRefGoogle Scholar
Drits, V.A., Ivanovskaya, T.A., Sakharov, B.A., Gor’kova, N.V., Karpova, G.V. & Pokrovskaya, E.V. (2001) Pseudomorphous substitution of globular glauconite by mixed-layer chlorite-berthierine. Lithology and Mineral Resources, 4, 390407.(in Russian).Google Scholar
Drits, V.A., Sakharov, B.A., Dainyak, L.G., Salyn, A.L. & Lindgreen, H. (2002a) Structural and chemical heteroge neity of illite-smectite s from Upper Jurassic mudstones of East Greenland related to volcanic and weathered parent rocks. American Mineralogist, 87, 15901607.CrossRefGoogle Scholar
Drits, V.A., Lindgreen, H., Sakharov, B.A., Jakobsen, H.J., Salyn, A.L. & Dainyak, L.G. (2002b) Tobelitization of smectite during oil generation in oil-source shales. Application to North Sea illite-tobelite-smectitevermiculite. Clays and Clay Minerals, 50, 8298.CrossRefGoogle Scholar
Dudek, T., Środoń, J., Eberl, D.D., Elsass, F. & Uhlik, P. (2002) Thickness distribution of illite crystals in shales. I: X-ray diffraction vs High-Resolution Transmission Electron Microscopy measurements. Clays and Clay Minerals, 50, 562577.CrossRefGoogle Scholar
Eberl, D.D., Drits, V.A., Środoń J., & Nuesch, R. (1996) MudMaster: A program for calculating crystalline size distribution and strain from the shape of X-ray diffraction peaks. N.S. Geological Survey, Open-File Report, 96171.Google Scholar
Eberl, D.D., Drits, V.A. & Środoń J., (1998a) Deducing growth mechanisms for minerals from the shapes of crystal size distributions. American Journal of Science, 298, 499 533.CrossRefGoogle Scholar
Eberl, D.D., Nuesch, R., Sčuchá, V. & Tsipursky, S. (1998b) Measurment of fundamental illite particle thicknesses by X-ray diffraction using PVP–10 intercalation. Clays and Clay Minerals, 46, 8997.CrossRefGoogle Scholar
Eberl, D.D., Kile, D.E. & Drits, V.A. (2002) On geological interpretations of crystal size distributions: Constant vs. proportionate growth. American Mineralogist, 87, 12351241.CrossRefGoogle Scholar
Elsass, F., Beaumont, A., Pernes, M., Jaunet, A.-M. & Tessier, D. (1998) Changes in layer organization of Na and Ca-exchanged smectite materials during solvent exchanges for embedment in resin. The Canadian Mineralogist, 36, 14751483.Google Scholar
Ey, F. (1984) Un exemple de gisement d’uranium sous discordance: les mineralisations proterozoiques de Cluff Lake, Saskatchewan, Canada. Thèse doctoral, Université Louis Pasteur, Strasbourg 1, France.Google Scholar
Fialips, C.-I., Huo, D., Yan, L., Wu, J. & Stucki, J.W. (2002a) Infrared study of reduced and reducedreoxidiz ed fer rugious smectite. American Mineralogist, 87, 455469.Google Scholar
Fialips, C.-I., Huo, D., Yan, L., Wu, J. & Stucki, J.W. (2002b) Effect of Fe oxidation state on the IR spectra of Garfield nontronite. American Mineralogist, 87, 630641.CrossRefGoogle Scholar
Guinier, A. (1964) Theorie et technique de la radiocrystallographie. Pp. 490 –636 in. Diffraction par les Reseaux Crystallins Imparfaits. Dunod, Paris.Google Scholar
Guthrie, G.D. & Veblen, D.R. (1989) High-resolution transmission electron microscopy of mixed-layer illite-smectite: computer simulations. Clays and Clay Minerals, 37, 111.CrossRefGoogle Scholar
Halter, G. (1988) Zonalite des alterations dans l’environement des gisements d’uranium associéa à la discordance du Proterozoique moyen (Saskatchewan, Canada). Thèse doctoral, Université Louis Pasteur, Strasbourg 1, France.Google Scholar
Heller-Kallai, L. & Rozenson, I. (1981) The use of Mössbauer spectroscopy of iron in clay mineralogy. Physics and Chemistry of Minerals, 7, 223238.CrossRefGoogle Scholar
Herrero, C.P. & Sanz, J. (1991) Short-range order of the Si, Al distribution in layer silicates. Journal of Physical Chemistry Solids, 52, 11291135.CrossRefGoogle Scholar
Herrero, C.P., Gregorkeiwitz, M., Sanz, J. & Serratosa, J.M. (1987) 29Si MAS NMR spectroscopy of micatype silicates: observed and predicted distribution of tetrahedral Al-Si. Physics and Chemistry of Minerals, 15, 8490.CrossRefGoogle Scholar
Horton, D. (1983) Argillitic alteration associated with the amethyst vein system, Creede Mining District, Colorado. PhD dissertation, University of Illinois, Urbana-Champaigne, Illinois, USA.Google Scholar
Ivanovskaya, T.A., Sakharov, B.A., Gor’kova, N.V., Karpova, G.V., Pokrovskaya, E.V. & Drits, V.A. (1999) Berthierine in catagenetically altered vendian- cambrian deposits of Podolia, Dniester region. Lithology and Mineral Resources, 2, 198212 (in Russian).Google Scholar
James, R.W. (1965) The Optical Principles of the Diffraction of X-rays. Cornell University Press, USA 664 pp.Google Scholar
Kakinoki, J. & Komura, Y. (1952) Intensity of X-ray diffraction by one dimensionally disordered crystal. I. General derivation in the case of the ‘Reichweite’ S = 0 and 1. Journal of the Physics Society of Japan, 7, 3035.CrossRefGoogle Scholar
Kakinoki, J. & Komura, Y. (1954) Intensity of X-ray diffraction by one dimensionally disordered crystal. II. General derivation in the case of the correlation range S > 2. Journal of the Physics Society of Japan, 9, 169176.CrossRefGoogle Scholar
Kogure, T. & Banfield, J.F. (1998) Direct identification of the six polytypes characterized by semi-random stacking. American Mineralogist, 83, 925 930.CrossRefGoogle Scholar
Kogure, T. & Banfield, J.F. (2000) New insights into the mechanism for chloritization of biotite using polytype ana lys is. Ameri can Mine ralogis t, 85, 12021208.Google Scholar
Kogure, T. & Nespolo, M. (1999a) A TEM study of longperiod mica polytypes: determination of the stacking sequence of oxybiotite by means of atomic-resolution images and Periodic Intensity Distribution. Acta Crystallographica, B55, 507 516.CrossRefGoogle Scholar
Kogure, T. & Nespolo, M. (1999b) First occurrence of a stacking sequence including (± 60º, 180º) rotations in Mg-rich annite. Clays and Clay Minerals, 47, 784 792.CrossRefGoogle Scholar
Kogure, T. & Nespolo, M. (2001) Atomic structures of planar defects in oxybiotite. American Mineralogist, 86, 336 340.CrossRefGoogle Scholar
Kogure, T., Hybler, J. & Durovicč, S. (2001) A HRTEM study of cronstedtite: Determination of polytypes and layer polarity in trioctahedral 1:1 phyllosilicates. Clays and Clay Minerals, 49, 310317.CrossRefGoogle Scholar
Kogure, T., Hybler, J. & Yoshida, H. (2002) Coexistence of two polytypic groups in cronstedtite from Lostwithiel, England. Clays and Clay Minerals, 50, 504 513.CrossRefGoogle Scholar
Kubicki, J.D., Blake, G.A. & Apitz, S.E. (1996) Ab inito calculat ions on alumosi lica te Q3 spec ies : Implications for atomic structures of mineral surfaces and dissolution mechanisms of feldspars. American Mineralogist, 81, 789799.CrossRefGoogle Scholar
Lanson, B., Beaufort, D., Berger, G., Baradat, J. & Lacharpaque, J.-C. (1996) Late-stage diagenesis of clay minerals in porous rocks: Lower Permian Rotliegendes reservoir off-shore of the Netherlands. Journal of Sedimentary Research, 66, 501518.Google Scholar
Lanson, B., Drits, V.A., Silvester, E. & Manceau, A. (2000) Structure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoc linic buse rit e at low pH. American Mineralogist, 85, 826838.CrossRefGoogle Scholar
Lanson, B., Drits, V.A., Gaillot, A.C., Silvester, E., Plançon, A. & Manceau, A. (2002) Structure of heavy metal sorbed birnessite: Part I. Results from X-ray diffraction. American Mineralogist, 87, 16311645.CrossRefGoogle Scholar
Lausen, S.K., Lindgreen, H. & Jakobsen, H.J. (1999) Solid-state 29Si M.S. NMR studies of illite and illitesmectite from shale. American Mineralogist, 84, 14331438.CrossRefGoogle Scholar
Lear, P.R. & Stucki, J.W. (1990) Magnetic properties and site occupancy of iron in nontronites. Clay Minerals, 25, 3 14.CrossRefGoogle Scholar
Lindgreen, H. & Surlyk, F. (2000) Upper Permian-Lower Cretaceous clay mineralogy of East Greenland: provenance, palaeoclimate and volcanicity. Clay Minerals, 35, 791806.CrossRefGoogle Scholar
Lindgreen, H., Drits, V.A., Sakharov, B.A., Salyn, A.L., Wrang, P. & Dainyak, L.G. (2000) Illite-smectite structural changes during metamorphism in black Cambrian Alum shales from the Baltic area. American Mineralogist, 85, 12231238.CrossRefGoogle Scholar
Lindgreen, H., Drits, V.A., Sakharov, B.A., Jakobsen, H., Salyn, A.L., Dainyak, L.G. & Kroyer, H. (2002) The structure and diagenetic transformation of illitesmectite and chlorite-smectite from North Sea Cretaceous-Tertiary chalk. American Mineralogist, 87, 429450.Google Scholar
Ma, C. & Eggleton, R.A. (1999) Surface layer types of kaolinite: a High-Resolution Transmission Electron Microscope study. Clays and Clay Minerals, 47, 181191.Google Scholar
Makovicky, E. & Hyde, B.G. (1992) Incommensurate two-layer structures with complex crystal chemistry. Pp. 1 –100 in. Incommensurate Misfit Sandwiched Layered Compounds. Materials Science Forum. Transactions Technical Publications, Zürich.Google Scholar
Madejová, J., Komadel, P. Čicčel, B. (1994) Infrared study of octahedral populations in smectites. Clay Minerals, 29, 319326.CrossRefGoogle Scholar
Manceau, A., Bounin, D., Kaiser, P. & Fretigny, C. (1988) Polarized EXAFS of biotite and chlorite. Physics and Chemistry of Minerals, 16, 180185.CrossRefGoogle Scholar
Manceau, A., Gorshkov, A.I. & Drits, V.A. (1992) Structural chemistry of Mn, Fe, Co and Ni in manganese hydrous oxides: Part II. Information from EXAFS spectroscopy and electron and X-ray diffraction. American Mineralogist, 77, 11441157.Google Scholar
Manceau, A., Chateigner, D. & Gates, W.P. (1998) Polarized EXAFS, distance-valence least-square modeling and quantitative texture analysis approaches to the structural refinement of Garfield nontronite. Physics and Chemistry of Minerals, 25, 347365.CrossRefGoogle Scholar
Manceau, A., Schlegel, M., Chateigner, D., Lanson, B., Bartoli, C. & Gates, W.P. (1999) Application of Polarized E.A.S to Fine-Grained Layered Minerals. Pp. 69 114.in. Synchrotron X-ray Methods in Clay Science (Schulze, D., Bertsch, P. and Stucki, J., editors). CMS Workshop lecture notes, 9. Clay Minerals Society, Aurora, Colorado, USA.Google Scholar
Manceau, A., Lanson, B., Drits, V.A., Chateigner, D., Gates, W.P., Wu, J., Huo, D. & Stucki, J.W. (2000a) Oxidation-reduction mechanism of iron in dioctahedral smectites. I. Crystal chemistry of oxidized reference nontronites. American Mineralogist, 85, 133152.CrossRefGoogle Scholar
Manceau, A., Lanson, B., Schlegel, M.L., Hargé J.C., Musso, M., Eybert-Berard, L., Hazemann, J.L. & Chateigner, D. (2000b) Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy. American Journal of Science, 300, 289343.CrossRefGoogle Scholar
Manceau, A., Tamura, N., Marcus, M.A., MacDowell, A.A., Celestre, R.S., Sublett, R.E., Sposito, G. & Padmore, H.A. (2002a) Deciphering Ni sequestration in soil ferromanganese nodules by combining X-ray fluorescense, absorption and diffraction at micrometer scale of resolution. American Mineralogist, 87, 14941499.CrossRefGoogle Scholar
Manceau, A., Marcus, M.A. & Tamura, N. (2002b) Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. Pp. 341428 in: Application of Synchrotron Radiation in Low-Temperature Geochemistry and Environmental Science (Tender, P., Rivers, M., Sturchio, N.C. and Sutton, S., editors). Reviews in Mineralogy and Geochemistry, 49. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Manceau, A., Tamura, N., Celestre, R.S., MacDowell, A.A., Geoffrey, N., Sposito, G. & Padmore, H.A. (2003) Molecular- scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the Mississippi basin. Environmental Science and Technology, 37, 7580.CrossRefGoogle ScholarPubMed
Martinez-Alonso, S., Rustad, J.R. & Goetz, A.F.H. (2002a) Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part I: Methods, results and comparison to experimental data. American Mineralogist, 87, 12151223.CrossRefGoogle Scholar
Martinez-Alonso, S., Rustad, J.R. & Goetz, A.F.H. (2002b) Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part II: Main physical factors governing the OH vibrations. American Mineralogist, 87, 12241234.CrossRefGoogle Scholar
McCarty, D.K. & Reynolds, R.C. (1995) Rotationally disordered illite-smectite in Paleozoic K-bentonites. Clays and Clay Minerals, 43, 271284.CrossRefGoogle Scholar
McCarty, D.K. & Reynolds, R.C. (2001) Three-dimensional crystal structures of illite-smectite minerals in Paleozoic K-bentonites from the Appalachian basin. Clays and Clay Minerals, 49, 2435.CrossRefGoogle Scholar
Méring, J. (1949) L’interference des rayons X dans les systemes a strat ificat ion desordo nnee. Acta Crystallographica, 2, 371377.CrossRefGoogle Scholar
Méring, J. & Glaeser, R. (1954) Sur la role de la valence cations exchangeable dans la montmorillonite. Bulletin de la Société francaise de la Minéralogie et Cristallographie, 77, 519530.CrossRefGoogle Scholar
Merriman, R.J., Roberts, B. & Peacor, D.K. (1990) A transmission electron microscopy study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, UK. Contributions to Mineralogy and Petrology, 106, 2740.CrossRefGoogle Scholar
Muller, F., Besson, G., Manceau, A. & Drits, V.A. (1997) Distribution of isomorphous cations within octahedral sheets in montmorillonite from Camp-Bertaux.Physics and Chemistry of Minerals, 24, 159166.CrossRefGoogle Scholar
Muller, F., Drits, V.A., Plançon, A. & Besson, G. (2000a) Dehydroxylation of Fe3+, Mg-rich dioctahedral micas: (I) structural transformation. Clay Minerals, 35, 491504.CrossRefGoogle Scholar
Muller, F., Drits, V.A., Tsipursky, S.I. & Plançon, A., (2000b) Dehydroxylation of Fe3+, Mg-rich dioctahedral micas: (II) cation migration. Clay Minerals, 35, 505514.CrossRefGoogle Scholar
Muller, F., Drits, V.A., Plançon, A. & Robert, J.P. (2000c) Structural transformation of 2:1 dioctahedral layer silicates during dehydroxylation-rehydroxylation reactions. Clays and Clay Minerals, 48, 5, 572585.CrossRefGoogle Scholar
Murakami, T., Sato, T. & Inoue, A. (1999) HRTEM evidence for the process and mechanism of saponiteto- chlorite conversion through corrensite. American Mineralogist, 84, 10801087.CrossRefGoogle Scholar
Nadeau, P.H., Tait, J.M., McHardy, W.J. & Wilson, M.J. (1984) Interstratification X.D. characteristics of physical mixtures of elementary clay particles. Clay Minerals, 19, 6776.CrossRefGoogle Scholar
Organova, N.I.. (1989) Crystal Chemistry of Incommensurate and Modulat ed Mixed-layer Minerals. Nauka, Moscow, 140 pp. (in Russian).Google Scholar
Palin, E.J., Dove, M.T., Redfern, S.A.T., Bosenick, A., Sainz -Dia z, C. I. & Warren, M.C. (2001 ) Computational study of tetrahedral Al-Si ordering in muscovite. Physics and Chemistry of Minerals, 28, 534544.CrossRefGoogle Scholar
Pavese, A. (2002) Neutron powder diffraction and Rietveld analysis; application to crystal-chemical studies of minerals at non-ambient conditions. European Journal of Mineralogy, 14, 241249.CrossRefGoogle Scholar
Pavese, A., Ferraris, G., Pishedda, V. & Fauth, F. (2001) M1-site occupancy in 3T and 2M1 phengites by low temperature neutron powder diffraction: reality or artefact. European Journal of Mineralogy, 13, 10711078.CrossRefGoogle Scholar
Plançon, A. (1981) Diffraction layer structures containing different kinds of layers and stacking faults. Journal of Applied Crystallography, 14, 300 304.CrossRefGoogle Scholar
Plançon, A. (2001) Order-disorder in clay mineral structure. Clay Minerals, 36, 114.CrossRefGoogle Scholar
Plançon, A. (2002) New modeling of X-ray diffraction by disordered lamellar structures, such as phyllosilicates. American Mineralogy, 87, 16721677.CrossRefGoogle Scholar
Plançon, A. (2003) Modelling X-ray diffraction by lamellar structures composed of electrically charged layers. Journal of Applied Crystallography, 36, 146 153.CrossRefGoogle Scholar
Plançon, A. & Drits, V.A. (1994) Expert system for structural characterization of phyllosilicates: I. Description of the expert system. Clay Minerals, 29, 3338.CrossRefGoogle Scholar
Plançon, A. & Drits, V.A. (2000) Phase analysis of clays using an expert system and calculation programs for X-ray diffraction by two- and three-component mixed-layer minerals. Clays and Clay Minerals, 48, 5762.CrossRefGoogle Scholar
Plançon, A. & Tchoubar, C. (1977) Determination of structural defects in phyllosilicates by X-ray powder diffraction. I. Principle of calculation of the diffraction phenomenon. Clays and Clay Minerals, 25, 430 435.CrossRefGoogle Scholar
Plançon, A., Giese, R.F., Snyder, R., Drits, V.A. & Bookin, A.S. (1989) Stacking faults in the kaolin-group minerals: Defect structures of kaolinite. Clays and Clay Minerals, 37, 203210.CrossRefGoogle Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249 303.in. Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5. Mineralogic al Society, London.CrossRefGoogle Scholar
Reynolds, R.C. (1985) NEWMOD. A computer program for the calculation of one-dimensional diffraction powders of mixed-layer clays. Published by the author, 8 Brook Road, Hanover, NH 03755, USA.Google Scholar
Reynolds, R.C. (1988) Mixed-layer chlorite minerals. Pp. 601 629.in. Hydrous Phyllosilicates (exclusive of micas ) (Bailey., S.W. edi tor ). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Reynolds, R.C. (1992) X-ray diffraction study of illitesmectite from rocks, < 1 mm randomly oriented powders, and < 1 mm oriented powder aggregates: the absence of laboratory-induced artifacts. Clays and Clay Minerals, 40, 387396.CrossRefGoogle Scholar
Reynolds, R.C., Jr., (1993) Three-dimensional X-ray diffraction from disordered illite: simulation and interpretation of the diffraction patterns. Pp. 44 78.in. Computer Applications to X-ray Diffraction Methods (Reynolds, R.C. and Walker, J., editors).CMS, Workshop Lectures 5. Clay Minerals Society, Bloomington, Indiana.Google Scholar
Reynolds, R.C. & Thompson, C.H. (1993) Illites from the Postam sandstone of New York, a probable noncentrosymmetric mica structure. Clays and Clay Minerals, 41, 6672.CrossRefGoogle Scholar
Ryan, P.C. & Reynolds, R.C. (1997) The chemical composition of serpentine-chlorite in the Tuscaloosa formation, United States Gulf Coast: EDX vs X.D. determinations, implications for mineralogic reactions and the origin of anatase. Clays and Clay Minerals, 45, 339352.CrossRefGoogle Scholar
Sainz-Diaz, C.I., Timon, V., Botella, V. & Hernandez-Laguna, A. (2000) Isomorphous substitution effect on the vibration frequencies of hydroxyl groups in molecular cluster models of the clay octahedral sheet. American Mineralogist, 85, 1038 1045.CrossRefGoogle Scholar
Sainz-Diaz, C.I., Caudros, J. & Hernandez-Laguna, A. (2001a) Analysis of cation distribution in the octahedral sheet of dioctahedral 2:1 phyllosilicates by using inverse Monte Carlo methods. Physics and Chemistry of Minerals, 28, 445454.Google Scholar
Sainz-Diaz, C.I., Hernandez-Laguna, A. & Dove, M.T. (2001b) Modeling of dioctahedral 2:1 phyllosilicates by means of transferable empirical potentials. Physics and Chemistry of Minerals, 28, 130141.CrossRefGoogle Scholar
Sainz-Diaz, C.I., Timon, V., Botella, V., Artacho, E. & Hernandez-Laguna, A. (2002) Quantum mechanical calculations of dioctahedral 2:1 phyllosilicates: Effect of octahedral cation distribution in pyrophillite, illite and smectite. American Mineralogist, 87, 958965.CrossRefGoogle Scholar
Sakharov, B.A., Besson, G., Drits, V.A., Kameneva, M.Y., Salyn, A.L. & Smoliar, B.B. (1990) X-ray study of the nature of stacking faults in the structure of glauconites. Clay Minerals, 25, 419435.CrossRefGoogle Scholar
Sakharov, B.A., Lindgreen, H., Salyn, A. & Drits, V.A. (1999a) Determination of illite-smectite structures using multispecimen X-ray diffraction profile fitting. Clays and Clay Minerals, 47, 555566.CrossRefGoogle Scholar
Sakharov, B.A., Lindgreen, H., Salyn, A. & Drits, V.A. (1999b) Mixed-layer kaolinite-illite-vermiculite in North Sea shales. Clay Minerals, 34, 333344.CrossRefGoogle Scholar
Sakharov, B.A., Plançon, A. & Drits, V.A. (1999c) Influence of outer surface structure of crystals on X-ray diffraction. Program with Abstracts, European Clay Groups Association, September, 1999, Krakow, Poland, p.129.Google Scholar
Schmidt, D. & Livi, K.J.T. (1999) HRTEM and SAED investigations of polytypism, stacking disorder, crystal growth, and vacancies in chlorites from subgreenschist facies out cr ops. American Mineralogist, 84, 160170.CrossRefGoogle Scholar
Schroeder, P.A. (1993) A chemical, XRD, and 27Al MASNMR investigation of Miocene gulf coast shales with application to understanding illite-smectite crystal chemistry. Clays and Clay Minerals, 41, 668679.CrossRefGoogle Scholar
Schroeder, P.A. & Pruett, R.J. (1996) Fe ordering in kaolinite: Insights from 29Si and 27Al MAS NMR spectroscopy. American Mineralogist, 81, 2638.CrossRefGoogle Scholar
Slonimskaya, M.V., Besson, G., Dainyak, L.G., Tchoubar, C. & Drits, V.A. (1986) The interpretation of the IR spectra of celadonites and glauconites in the region of OH- stretching frequencies. Clay Minerals, 21, 377388 CrossRefGoogle Scholar
Środoń J., (2002) Quantitative mineralogy of sedimentary rocks with emphasis on clays and with applications to K–A dating. A Journal of Mineral Sciences, 66, 677687.Google Scholar
Środoń, J., Andreoli, C., Elsass, F. & Robert, M. (1990) Direct high-resolution transmission electron microscopic measurement of expandability of mixed-layer illite-smectite in bentonite rock. Clays and Clay Minerals, 38, 373 379.CrossRefGoogle Scholar
Środoń J., , Eberl, D.D. & Drits, V.A. (2000) Evolution of fundamental-particle size during illitization of smectite and implications for reaction mechanism. Clays and Clay Minerals, 48, 446458.CrossRefGoogle Scholar
Strawn, D., Doner, H., Zavarin, M. & McHugo, S. (2002) Microscale investigation into the geochemistry of arsenic, selenium and iron in soil developed in pyritic shale materials. Geoderma, 108, 237 –257.CrossRefGoogle Scholar
Tsipursky, S.I. & Drits, V.A. (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique texture electron diffraction. Clay Minerals, 19, 177193.CrossRefGoogle Scholar
Tsipursky, S.I., Eberl, D.D. & Buseck, P.R. (1992) Unusual tops (bottoms?) of particles of 1M illite from the Silverton cadera. Abstracts of the Annual meeting of A.A. C S.A. SSSA. and Minneapolis, C.S., USA, p. 56.Google Scholar
Uhlik, P., Sčuchá, V., Elsass, F. Čaplovicčova, M. (2000) High Resolution Transmission Electron Microscopy of mixed-layer clays dispersed in PVP-10: A new technique to distinguish detrital and authigenic illitic material. Clay Minerals, 35, 781789.CrossRefGoogle Scholar
Vantelon, D., Pelletier, M., Michot, L.J., Barres, O. & Thomas, F. (2001) Fe, Mg and Al distribution in the octahedral sheet of montmorillonites. An infrared study in the OH-bending region. Clay Minerals, 36, 369379.CrossRefGoogle Scholar
Vinograd, V.L. (1995) Substitution of I.A. in layer silicates: Calculation of the Al-Si configurational entropy according to 29 Si N.R. spectra. Physics and Chemistry of Minerals, 22, 8789.CrossRefGoogle Scholar
Warr, L.N. & Neito, F. (1998) Crystal thickness and defect density of phyllosilicates in low-temperature metamorphic pelites: a T.M. and X.D. study of clay mineral crystallinity index standards. The Canadian Mineralogist, 36, 14531474.Google Scholar
Warshaw, C.M.(1959) Experimental studies of illites. Clays and Clay Minerals, 7, 303 316.CrossRefGoogle Scholar
Ylagan, R.F., Altaner, S.P. & Pozzuoli, A. (2000) Reaction mechanisms of smectite illitization associated with hydrothermal alteration from Ponza island, Italy. Clays and Clay Minerals, 48, 610 631.CrossRefGoogle Scholar
Zvyagin, B.B., Rabotnov, V.T., Sidorenko, O.V. & Kotelnikov, D.D. (1985) Unique mica consisting of noncentrosymmetric layers. Izvestiya Akademii Nauk S.S.S.R, Seriya Geologicheskaya, 35, 121124.(in Russian).Google Scholar
Zvyagin, B.B. & Drits, V.A. (1996) Interrelated features of structure and stacking of kaolin mineral layers. Clays and Clay Minerals, 44, 297303 CrossRefGoogle Scholar
Zviagina, B.B., McCarty, D.K., Środoń, J. & Drits, V.A. (2002) Interpretation of IR spectra of dioctahedral 2:1 phyllosilicates in the region of OH stretching vibrations. Proceedings of the 18th General Meeting of the International Mineralogical Association, September 2002, Edinburgh, UK, p. 158.Google Scholar