Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T17:19:33.865Z Has data issue: false hasContentIssue false

Stereoselectivity of montmorillonite in the adsorption and deamination of some amino acids

Published online by Cambridge University Press:  09 July 2018

B. Siffert
Affiliation:
Centre de Recherche sur la Physico-Chimie des Surfaces Solides, 24, avenue du Président Kennedy, 68200 Mulhouse, France
A. Naidja
Affiliation:
Centre de Recherche sur la Physico-Chimie des Surfaces Solides, 24, avenue du Président Kennedy, 68200 Mulhouse, France

Abstract

Optical isomers deamination of L- and D-glutamic and aspartic amino acids and of their DL racemic mixtures has been achieved in the presence of Na-montmorillonite at pH = 6 and room temperature. The adsorption curves showed that the enantiomer adsorbed depends on the type of amino acid. Nevertheless, deamination reaction kinetics brought about a stereoselectivity of the clay mineral for the L-isomer and implicitly showed an unquestionable “structural chirality character” of the clay mineral.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernal, J.D. (1949) The physical basis of life. Proc. Phys. Soc., 62, 537–543.Google Scholar
Bondy, S.C. & Harrington, M.E. (1979) L-amino acids and D-glucose bind stereospecifically to a colloidal clay. Science, 203, 1243–1244.Google Scholar
Bonner, W. A. & Flores, J. (1973) On the asymmetric adsorption of phenylalanine enantiomers by kaolin. Currents in Modern Biology, 5, 103–113.Google Scholar
Cairns-Smith, A.G. (1974) Genes made of clay. New Scientist, 61, 214216.Google Scholar
Cairns-Smith, A.G. (1975) A case for an alien ancestTy. Proc. Roy. Soc. London, Series By, 189, 249–274.Google Scholar
Cairns-Smith, A.G. (1985) The first organisms. Scientific American,, 252, 74–82.Google Scholar
Coyne, L.M., Lawless, J., Lahav, N., Sutton, S. & Sweeney, M. (1981). Clays as prebiotic photocatalysts. Origin of Life,, 11, 115124.Google Scholar
Coyne, L.M. (1985) A possible energetic role of mineral surfaces in chemical evolution. Origin of Life,, 15, 161206.Google Scholar
Degens, E.T., Matheja, J. & Jackson, T. A. (1970) Template catalysis: asymmetric polymerization of amino adds on day minerals. Nature,, 227, 492493.CrossRefGoogle Scholar
Flores, J. & Bonner, W. A. (1974) On the asymmetric polymerization of aspartic acid enantiomers by kaolin. J. Mol. EvoL, 3, 49–56.Google Scholar
Friebele, E., Shimoyama, A. & Ponnamperuma, C. (1980) Adsorption of protein and non-protein amino acids on clay mineral: a possible role of selection in chemical evolution. J. Mol. EvoL, 126, 269–278.Google Scholar
Jackson, T.A. (1971) Evidence for the selective adsorption and polymerization of the L-optical isomers of amino acids relative to the D-optical isomers on the edge faces of kaolinite. Experientia, 27, 242–244.CrossRefGoogle Scholar
Julg, A. (1987) Asymmetric synthesis of the alanine precursor cv-aminopropionitrile on kaolinite and L- homochirality of amino acids in proteins. C.R. Acad. Sci. Ser. 2,, 305, 563–565.Google Scholar
Julg, A. (1988) Asymmetric adsorption on kaolinite and L-homochirality of amino acids in the proteins of living beings. Folia Chem. Theor. Lat., 16, 23–31.Google Scholar
Julg A, & Ozias, Y. (1988) Asymmetric adsorption of ethylimminium cation on kaolinite and L-homochirality of amino acids in proteins. Theochem., 48. 1725.Google Scholar
Lahav, N., White, D. & Chang, S. (1978) Thermal condensation of glycine in fluctuating clay environment. Science,, 201, 67–69.Google Scholar
Lavollay, J. (1980) La Chimie des Etres Vivants,p. 5. Presse Univ. de France, Paris.Google Scholar
McCullough, J J. & Lemmon, R. (1974) The question of the possible asymmetric polymerization of aspartic acid on kaolinite. J. Mol. EvoL, 3, 57–61.CrossRefGoogle Scholar
Mortland, M.M. (1984) Deamination of glutamic acid by pyridoxal phosphate-Cu-Smectite Catalysts. J. Mol. Cat., 27, 143–155.Google Scholar
Naidja, A. (1988) Action catalytique des argiles de type smectites dans les reactions biochimiques.These de Doctorat, Univ. Haute-Alsace, Mulhouse, France.Google Scholar
Naidja, A. & Siffert, B. (1989) Glutamic acid deamination in the presence of montmorillonite. Clay Miner., 24, 649–661.Google Scholar
Naidja, A. & Siffert, B. (1990) Oxidative decarboxylation of isocitric acid in the presence of montmorillonite. Clay Miner., 25, 27–37.Google Scholar
Paecht-Horowitz M., , Berger, J. & Katchalsky, A. (1970) Prebiotic synthesis of polypeptides by heterogeneous polycondensation of amino acid adenylates. Nature,, 228, 636–638.Google Scholar
Ponnamperuma, C., Shimoyama, A. & Friebele, E. (1982) Clay and the origin of life. Origins of Life,, 12, 9–40.Google Scholar
Siffert, B. & Naidja, A. (1987) Decarboxylation catalytique de Tacide oxaloacetique en presence de montmorillonite. Clay Miner., 22, 435446.Google Scholar
Theng, B.K.G. (1974) The Chemistry of Clay Organic Reactions. Adam Hilger Ltd, London.Google Scholar
Yamagishi, A. (1981) Stereoselective adsorption on a clay surface modified by an optically active nickel(II) tri(l-10- phenanthroline) chelate. J. Chem. Soc. Chem. Comm., 53, 1128–1129.Google Scholar
Yamagishi, A. (1982) Racemic adsorption of Dicyano bis (1,10-phenanthroIine) iron(II) on coHoidally dispersed sodium-montmorillonite. Inorg. Chem., 21, 1778–1782.Google Scholar
Yamagishi, A. (1983) Chirality recognition of the clay surface modified by an optically active metal chelate. J. Chem. Soc. Dalton Trans., 679681.Google Scholar
Yamagishi, A. (1985) Chromatographic resolution of enantiomers having aromatic groups by an optically active clay-chelate adduct. J. Am. Chem. Soc., 107, 732–734.Google Scholar
Yamagishi, A. (1987) Optical resolution and asymmetric synthesis by use of adsorption on clay minerals. J. Coord. Chem., 16, 131–211.Google Scholar
Youatt, J.B. & Brown, R.D. (1981) Origins of chirality in nature: a reassessment of the postulated role of bentonite. Science, 212, 1145–1146.Google Scholar